• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Does the length of the wire affect the resistance?

Extracts from this document...


Mahmoodul Shah07/04/03

Does the length of the wire affect the resistance?

All electrical conductors resist the current through them to some extent. This property is called resistance (R) and it affects the size of the current flowing in a circuit. When the resistance is increased, the current will decrease. Resistance is measured in ohms. The formula to work out resistance is:


V = Voltage

I = Current


In this investigation I will be investigating the resistance of a 100 cm wire i.e. from 0-100 cm going up in tens. To achieve this task I will need the following equipment listed below:

  • Crocodile clips
  • Ammeter
  • Voltmeter
  • 2 constantan and 3 Nichrome wires
  • Battery back
  • A base where the wires will be placed upon to measure the resistance           wires

For accurate results I need to make the investigation as fair as possible. This means that certain variables which can easily effect the investigation will have to be kept constant and I will have to select one which will be used in my investigation. The following can effect the investigation:

Type of metal

Length of the wire

Thickness of wire

Temperature of the wire

The above can effect the investigation but I will be selecting one to be used for our experiment. That is the thickness of the wire in one type of metal. However to broaden our experiment we will be using two types of wire; constantan and Nichrome.

...read more.


Voltage (V) = Current (A) × Resistance (Ω)

This defines resistance. For Ohmic conductors the resistance is constant and Ohms law of proportionality holds. This means that after I have done my investigation I should get graphs which are proportional (Y = X) i.e. as the length increases, resistance increases.


To start this experiment I first collected the correct equipment. The equipment that I used is as following:

  • Crocodile Clips
  • Ammeter
  • Voltmeter
  • The wires that were going to be tested, nichrome and constantan
  • Battery pack
  • A base where the wires will be placed upon to measure the resistance
  • Wires (i.e. used with crocodile clips)

After collecting the equipment we then set up the experiment. Below is the diagram which shows how the investigation looked like:


This diagram can be drawn simply as the following:image01.png


During the investigation we kept all the variables constant except for one, the thickness. I used in total five thickness of five wires where two wires were constantan (0.18 mm and 0.30 mm) and nichrome (0.46 mm, 0.55 mm and 0.69 mm diameter). In the thickness of wires I did see a significant difference. As the thickness increased of both wires the resistance decreased. This is because the thicker the wire more the (current) electrons have a wider space to travel so they will collide less often with the atoms with the wire like it would do in a thin wire.

        In total we took five measurements of the five wires.

...read more.


        If I was to do the experiment again I would firstly use a power supply instead of a battery pack. This is because with a power supply you are getting an accurate amount of electricity supply rather than a battery pack because when I increased the length the voltage increased meaning power of the batter reducing. Instead of using two types of metals I could have used 4 types of metals meaning a better comparison between the four rather than two. We could use the type of metal as a selected variable to see how the resistance occurs over that. If I was to redo the experiment then I would use a straight wire rather then a bendy wire. This is because in our experiment the wires that were being tested were not exactly straight rather bendy which could be clearly seen. Next time I would use a straight wire which would enable a straight flow of current rather then a bended wire where resistance is higher.   Generally I know that this experiment was very good as my results show this.



...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. An experiment to find the resistivity of nichrome

    causing a lower resistance because of the increase in the number of electrons. Also if the atoms in the material are closely packed then the electrons will have more frequent collisions and the resistance will increase. 3.Wire length : If the length of the wire is increased then the resistance

  2. Resistance of a Wire Investigation

    Due to the high rates of photosynthesis of the pondweed, readings should be taken within shorter times. I had originally chosen to count the number of bubbles in one minute but this produced miscounts in the readings. If during a repeated experiment, counting bubbles is still used, there is a

  1. Resistance and Wires

    This would give me an answer of 29.4cm. This can be proved to be reasonably accurate when plotted on the graph. I have done this as shown on the graph. The reading given by the graph is 31cm, which considering the possibly inaccuracy of the value of 'n', is evident

  2. Does Increasing the Length of a Nichrome Wire affect its Resistance

    being too hot and just being one set of continuous results instead of letting it cool down after each length. Accuracy Test To improve accuracy in my experiment I will consider the following points: * Cut the wire to the correct length so it will give me accurate data as

  1. Investigating how thickness and length affect the resistance of particular wires.

    When coming to plotting a graph I will use the actually diameter as this is exactly how thick the wire is, which is what I'm investigating. For the length I will test ten different lengths of wire, increasing by a set amount each time to make it easier to plot a graph.

  2. An investigation into how the resistance of wire is related to the length.

    Any type of conductor which has any amount of resistance gives off heat when a current is passed through it (Joule's Law). Resistance varies with the type of material used, the length of the wire, the temperature of the wire and the diameter (wires have circular cross sections).

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work