• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15

Heat of Reaction - Dissolving Magnesium in acid

Extracts from this document...

Introduction

Heat of Reaction - Dissolving Magnesium in acid Planning The aim of this investigation is to study the temperature increase when magnesium is dissolved in Hydrochloric acid. This reaction is an exothermic reaction so some heat will be given off, but the aim of the investigation is to find if the amount of heat given off will vary when the length of magnesium is changed. The reaction that will take place is as follows: Magnesium + Hydrochloric Magnesium + Hydrogen Acid solution Chloride solution Prediction I predict that as the length of magnesium is increased, the temperature change of the Magnesium Chloride solution will increase. I also think that the relationship between the two is directly proportional. Because of this I predict that if the length of magnesium is doubled, the temperature will also double. Explanation of prediction I predict that as the length of magnesium is increased, the temperature change of the Magnesium Chloride solution will increase. This is because as the amount of magnesium is increased, more metallic bonds are broken. Therefore more bonds will be formed to make the products. It is the bond forming that gives off thermal energy, so if more bonds are being formed, more heat will be emitted. This means that the length of magnesium is directly proportional to the heat produced. Put simply, the chemical reaction is bond breaking followed by bond forming. In an exothermic reaction bond forming releases more energy than is required bond breaking, so surplus energy is given out. Therefore, more magnesium means more bond changes and ultimately greater temperature changes. I also predict that if the length of magnesium is doubled, the temperature increase will also double. ...read more.

Middle

This is so any anomalous results can be recognized and repeated until a result that fits the line of best fit on the graph is achieved. As well as displaying results on a graph, they should also be recorded in the following table: Length of Mg (cm) Start Temp (�C) Finish Temp (�C) Temp Change (�C) 0 0.0 0.0 0.0 2 20.0 23.0 3.0 4 20.0 26.0 6.0 6 20.0 29.0 9.0 8 20.0 32.0 12.0 10 20.0 35.0 15.0 12 20.0 38.0 18.0 A column for the molarity and volume of the acid is not included because it will be kept at a constant. Analysis It has been found that as the length of magnesium increases, so does the temperature change. The evidence of the results from the experiment strongly confirms the predictions. This is so because the prediction was 'as the length of magnesium is increased, the temperature change of the Magnesium Chloride solution will increase', this was confirmed by the results. The results recorded show clearly the temperature increase, e.g. in my results the temperature change was 3, 6, 9, 12, 15 and 18�C. It was also predicted how the graph would look, this graph was identical to the graph produced from the results. The results support the prediction well but the changes are not as exact as we would have liked because we did the experiment with apparatus that was not entirely error free. The class results are as follows: Length of Magnesium (cm) T E M P (?C) C H A N G E 0 0 0 0 0 0 0 0 0 0 0 0 2 4.0 4.0 2.5 4.5 4.0 3.0 4.5 3.0 1.0 3.0 4.0 4 6.5 7.0 6.0 7.5 7.0 6.0 7.0 6.0 6.0 6.5 9.5 6 10.0 10.0 ...read more.

Conclusion

This would have scraped off the layer of oxide and given more accurate results. 2. Although the polystyrene cup was effective in reducing heat loss, it could have been made even better if there had been two polystyrene cups instead of just the one. Also on the subject of insulation, the hole in the wooden lid for the thermometer was considerably larger than it needed to be, so heat will have escaped that way also. To prevent this heat loss, a smaller hole should be used. 3. The same polystyrene cup was used for each test. This meant that there would still have been some acid from the previous test in the cup when being used. This could have affected the results. To stop this, a new, sterilized cup should be used each time. All of these points are fairly insignificant own their own, but together they could make considerable changes to the results recorded. Numerous other investigations could be done in relation to this one. These include: 1. Investigating how other metals react with the hydrochloric acid. This would show where metals fit into the reactivity series, i.e. a metal higher up the reactivity series than magnesium would cause a bigger temperature increase and visa versa. 2. Investigating how other acids such as Sulphuric acid, nitric acid and carbonic acid react with magnesium. Do they produce a greater amount or a smaller amount of thermal energy than hydrochloric acid? 3. Investigating how magnesium would react if the weight were regulated instead of the length. Would a change in surface area affect the amount of heat produced? (However, this would be incredibly difficult to do as 2cm of magnesium has a very small mass.) 4. Investigating the volume of hydrogen being given off as well as the amount of heat being given off. Are the two directly proportional? [LL1] Danny Longman November 2001 4 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Aqueous Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Aqueous Chemistry essays

  1. Rate of heat loss

    What the vessel is made of The material of the vessel could change the rate of heat loss. If it is made from polystyrene it will not allow much heat to pass through it. If it is made of metal then it will allow more heat to pass through it.

  2. Specific Heat Capacity

    I will use a top pan balance measuring to 2dp so that I have accurate enough values to use in my calculations. String 5 pieces To attach to the metals so they can be moved from the boiling water to the calorimeter.

  1. To investigate the differences in order of reaction and activation energy of the reactions ...

    * Magnesium ribbon - 0.5 m. For actication energy: * Hydrochloric acid: 100cm3 of 2 Molar solution. * Ethanoic acid: 100cm3 of 2 Molar solution. * Magnesium ribbon - 0.5m. Important information Magnesium ribbon has a mass of 1g per metre its dimensions and density are near constant along it's

  2. The Rates of Reaction of Metals with Acid.

    100 cm3 of 4 molar HCl 100 cm3 of 1 molar H2SO4 100 cm3 of 4 molar H2SO4 8 30mm strips of magnesium ribbon 1) Take the measuring cylinder, measure out in turn 50cm3 of all the acids, and place them in to a separate conical flask.

  1. Rates of Reaction

    I will time the experiment for a period of 2 minutes; results will be recorded every 10 seconds in order to achieve more accurate results. In the graph shown below conveys the relationship between the concentrations of the hydrochloric acid against the time.

  2. How much Iron (II) in 100 grams of Spinach Oleracea?

    in 100 grams of Spinach Oleracea easier as I would simply have to multiply the volume of Iron (II) in 20 grams by 5. The spinach was boiled in distilled water (l) as this is how the Spinach would be prepared if it was to be eaten.

  1. mass of magnesium

    Surely, because I used the solution that was produced in method1 to carryout method2, then the results that I expected should have been similar for both methods. Rather they had a difference of 3.6; this indicates that it was either an error caused by the procedure I was taking or

  2. Rate of Chemical Reaction between Magnesium and Hydrochloric Acid

    * Test Tube * Bunsen Burner * Spatula * Splint * Test tube rack (optional) To keep the experiment safe I will do the following: - * Wear safety glasses * Tuck tie in * Mop up any spillages. Method for preliminary work.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work