• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12

Investigate how the cross section of a wire affects the resistance in a circuit.

Extracts from this document...


Name: David Hayim Attias

Physics Coursework

Date: 6/11/03

To investigate how the cross section of a wire

affects the resistance in a circuit


In metals, when the electron becomes detached from the outer shell of their parent atom, it is then able to move freely between the positive ions of the metal, which arrange themselves in a regular lattice.

In pure metals, the structure can be represented like this:


The electrons are              

moving at a very high

speed randomly, with            

no pattern at all.  

image02.png= Positive ion

image03.png= Electron

The electrons in a pure metal move at a very fast speed randomly, with no pattern at all.

Metals are the best conductors because the detached electrons create a huge flow of ‘free’ electrons that can be made to move by the push from the voltage, in a circuit. Voltage is what gives the energy to the electrons, which pushes them along the wire of the circuit.


Metals are good conductors because their atoms are arranged in a regular lattice, so that when the electrons flow through them they have many straight paths to go through. If a positive ion collides with an electron, the electron will slow down and the positive ion will pick up some of its energy.

When this happens often, there will be two effects:

  1. The current will slow down.
  2. The metal will get hotter.  

When the metal gets hot it will cause the resistance to go higher. When the resistance increases, the current is reduced. Resistance stops current.

...read more.



My results have been clearly shown in these tables below. These tables show the voltage produced in each experiment, the current of each experiment and the resistance there is in each experiment. I know that my results are correct, because there are no figures that have come out wrong to disprove my theory. I have also drawn some graphs to prove that the voltage produced in a circuit is directly proportional to the resistance in the circuit. This graph was not hard to draw as the graph comes out to be a straight line. In the table there are different amounts of voltages because

...read more.



My experiments and investigation went very well. My results were very accurate as they all went up in proportion. But, there was a few experimental errors, but no result was off by a lot, but a few were off a little bit. I know this because when I drew my graphs I saw that the point didn’t fit in the straight or curved line. These errors could have been caused by:

  1. The voltmeter or ammeter was flickering therefore it was hard to get the exact reading.
  2. The wire could have mistakenly been measured a bit too long or too short.
  3. The wire could have heated up during the experiment, therefore getting a higher resistance.
  4. The wire may have had some kinks in it.

Due to all these experimental problems, reading the voltmeter, ammeter or the measurements of the wire makes my experiment not that reliable.    

As I had a few errors in my graphs I plotted another line using my graphical results to see if it would make a difference, if those results would be any better, but if you look at the graphs you can see that they are both practically the same, and the same points that are wrong in the calculated line, they are also wrong in the graphical line.


To prove my theory even further, I would repeat my experiment using:

  1. Different lengths of wires
  2. Test the wires at different temperatures
  3. Use a voltmeter and an ammeter which have a greater sensitivity

...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. Physical - Circuit

    Procedure of temperature: 1. By raising the temperature, copper wire should be used. 2. Follow the method above until step 8. 3. Put the water with room temperature into a beaker. 4. Put the wire into the water. 5. Switch the power supply on and record down the voltage and current for three times.

  2. Identification of an unknown test wire through the experimental determination of it's resistivity.

    Measure the diameter of the wire from 5 different places on the wire using the micrometer, and then get a mean diameter. 7. Use the mean diameter to calculate the cross-sectional area as shown below: - A=? x ?d) � OR A=?r� 2 8.

  1. What affects the resistance of a wire?

    We did the experiment using a copper wire and a constantan wire, taking the readings at every 10cm. The results were recorded: CURRENT = 0.20 AMPS Length (cm) Copper Wire Constantan Wire PD (V) Resistance () PD (V) Resistance ()

  2. A little bit about the life and times of Georg Simon Ohm:

    I = V / R to find the Current. R = V / I to find the Resistance. Using one of the three algebraic variations of Ohm's law, and any two known variables, one can solve for the other unknown quantity.

  1. To investigate how current affects the resistivity of a wire.

    This decreases the resistance in the wire, which increases the current. Material of wire () Some metals like copper are good conductors. Their atoms are arranged in a crystal lattice and they have a 'sea' of free electrons that can flow easily in the spaces between the atoms Nichrome wire

  2. Planning Experimental Procedures

    As I carry out my experiment the wires will get hot and this will effect the results. A way of preventing this would be to do this experiment in a fridge. If I drilled a whole either side of the fridge and had my tested wire through there hooked up

  1. To investigate how a height of a ramp affects the speed of a trolley ...

    * Instantaneous speed - when the trolley/car is traveling too fast measuring will be difficult and not accurate.

  2. Investigate how mass affects the diameter of an impact crater.

    I found that all the balls available to conduct the experiment have masses of varying assortment. This will make it difficult to produce results that have comparable trends and relationships and more importantly this will not give me independent control over the values.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work