# Investigate the difference in energy transfer when dropping a squash ball from different heights.

Extracts from this document...

Introduction

Investigate the difference in energy transfer when dropping a squash ball from different heights. Squash Ball Experiment Important Variables: Height Of Drop Temperature of Ball Material of Ball Acceleration Due To Gravity Mass Air Resistance Introduction: I will investigate how energy is transferred when dropping a squash ball, and how the height the ball is dropped from effects how much energy is transferred. The types of energy I will be looking at are: - GPE (gravitational potential energy) - This is at its most when the ball is being held. To work out an object's GPE we use the equation: - GPE=Mass (kg) x Gravity (n/kg) x Height (m) So the GPE of a squash ball at a height of 2 metres, when it's mass is 0.237kg (23.7g) and Gravity is always 10n/kg is: 0.237 x 10 x 2 = 4.74 j Kinetic energy - this is when the ball is moving i.e. falling through the air; we can work it out using the equation: - Kinetic energy = 1/2 x mass x velocity? ...read more.

Middle

This will be done by dropping the squash ball from five different heights and recording the height bounced. The amount of energy transferred will then be worked out by: - - Working out the squash balls GPE in relation to the height it was dropped from - Subtracting from the GPE the MGH (mass x gravity x height) of the height to which it bounced, for example Balls GPE= 0.237 x 10 x 2= 4.74 MGH of height bounced= 0.237 x 10 x 0.54=1.2798 So the energy transferred would be: So 3.4602j of energy has been transferred into heat and sound. As I am using two different squash balls (one with a white spot and one with a red spot) I will repeat this process on both sets of results for the five different heights. Prediction I predict that as the balls dropping height increases; the energy transferred will also increase Conclusion From my results I can conclude that as the temperature of the ball rises the height of the bounce gets higher. ...read more.

Conclusion

I had one anomalous result even after an average over five measurements. I can say that looking at my results when I repeated results they were quite close together. I think that I did the experiment quite well although I found it hard to spot where the ball bounced too. This is why I did an average over 5 measurements. To improve the experiment I would need to use specialist equipment like lasers so I could be sure where the ball bounced too. Ways in which I could extend this experiment are to use a different kind of rubber in the ball so that it doesn't melt at such a low temperature this way I could carry on to see whether the kinetic theory is still right at higher temperatures. Also I would like to see what happened when the ball was at 0 degrees Celsius. I would like to do this to see whether the atoms still vibrated causing the ball to bounce. If it did I would like to carry on getting lower and lower to see whether there was a temperature where the atoms no longer vibrated (Absolute Zero) ...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

## Found what you're looking for?

- Start learning 29% faster today
- 150,000+ documents available
- Just £6.99 a month