• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigating the relationship between drop height and bounce height when a ball is dropped.

Extracts from this document...

Introduction

Bradley Wells – 11X2 – Mrs Readings – Physics Coursework – Monnet

Investigating the relationship between drop height and bounce height when a ball is dropped

Theory

When an object has Gravitational Potential Energy due to its raised position, it will gain Kinetic Energy if it falls. The maximum kinetic energy it can gain is equal to the potential energy it can lose.

image00.png

When the ball hits the ground and then bounces back up again, the amount of potential energy the second time is not as great as from when you first started. This is because of Percentage Energy Loss and Elastic Potential Energy. The Percentage Energy Loss is the second Potential Energy divided by the first Potential energy then multiplied by one hundred.

E.g. PE²

       PE¹   x 100 = Percentage Energy Lost

Energy stored in a stretched or compressed spring is elastic potential energy. When Elastic Potential Energy occurs, sound waves, movement and little heat is made throughout the surface it hits and therefore this can also be a factor I could measure.

Another energy factor I could measure is the Energy Conversion. You can find this out by one simple equation similar to the one before.

E.g. Height 1

       Height 2   x 100 = Energy Conversion

There are also equations to work out the Potential Energy and Kinetic Energy too.

E.

...read more.

Middle

  • Metre ruler stick
  • Ball of some type
  • Pencil and paper to record results

Plan cont.

Now with the basic outline of the plan sorted all we have

to is sort out the variable I will change during the

investigation in order to find the best results to conclude my

prediction or theory.

Here is the list of recordings I will use for the investigation:

Height (m)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

We felt these would be the right amount of results and would give us a wide range of results good enough to prove and test my prediction or theory and be satisfactory enough for our targets. One more factor we had to consider is how we would make the recordings. Of course all you had to do was drop a ball from a certain height and then see how high it bounces back up again, then work out the energy factors involved, but we were faced with another problem. We had to work out, since it was a rounded tennis ball (a sphere), where we would make the recordings from. We had three options to choose from: the top of the ball, the centre of the ball or the bottom of the ball.

...read more.

Conclusion

You can see from the results, that there is the odd value or values out of place, due to the fact that the figure is different to what it should be. This basically means that the naked eye is not always the best option to use for this experiment. To perform this experiment with the utter most perfection, a machine or tool of some type could be used to record the exact height of both height 1 and 2 to perfection. With this you know your results are done properly and no major mistakes were made. Luckily since I had enough results, I could spot where mistakes were made in judging the height 2 of the ball and therefore you can count them as extreme values but mistakes are always going to be made by accident. Therefore there is not much we could have done to have changed this factor.

Another thing I would have liked to have done is to have tried to record the exact mass of the tennis ball, with doing this I can work out Potential and Kinetic Energy at each height and worked out the Potential Energy Loss per result. With this I could have produced more figures in my report which could have supported my prediction with more facts.

...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. How does the height a tennis ball bounce depend on the height the ball ...

    For example, don't bounce the ball onto carpet for the first few measurements and then bounce the ball onto a hard surface for the rest of the experiment. There will be a dramatic difference because the carpet will absorb more of the ball's elastic potential energy when the ball hits it.

  2. Investigating the Percentage Energy Loss When a Ball Bounces

    I think that the percentage of energy lost will remain approximately the same no matter what height I drop the ball from. This is because the amount of energy lost to non-useful energy such as heat and sound is proportional to the gravitational potential energy the ball has to start with.

  1. The Bouncing Ball Experiment

    scales One standard size ping-pong ball Two Metre-long Rulers *There must also be access to a staircase that rises to at least five cm (500cm) from the ground. Diagram: Method: A tape measure was used to measure where on the stairs the height we desired from floor to staircase was.

  2. physics of the bouncing ball

    The ping-pong ball has the lowest mass closely followed by the bouncy ball. This means there will be less resistance but also less gravitational energy because the mass is less. However the bouncy ball is highly compressible and will retain vast amounts of energy upon impact.

  1. Investigate the correlation between the height at which a ball is dropped and the ...

    The ball was dropped three times from each height and the results were recorded. Height dropped from (cm) Height bounced to (cm) 1 2 3 Average 10 7 6.5 6.5 6.8 20 14 13 13 13.3 30 22 22.5 21 21.8 40 29 30 30.5 29.8 50 35 36 35.5

  2. Investigating the factors that affect a bouncing ball.

    The highest place it bounces up is the rebound height. The ball reaches this height fast and care must be taken when reading the height. * For each drop perform the test 3 times so that a better degree of accuracy can be taken, and averages can be made.

  1. Investigation on the factors that affect the bounce of a ball.

    The ball acquires Gravitational Potential Energy because of its position and also the ball is working against the gravity to acquire this position. Kinetic energy is gained during the motion of the ball. The frictional energy is lost due to the production of heat and sound.

  2. An investigation to find out how gravitational potential energy is converted into kinetic energy.

    against p.e., the application of the straight-line equation to the k.e. and p.e. formulae will provide a suitable method to compare these energies. The formula mentioned earlier to calculate the speed can be used to give a theoretical result prior to conducting the experiment.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work