• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigating the relationship between drop height and bounce height when a ball is dropped.

Extracts from this document...

Introduction

Bradley Wells – 11X2 – Mrs Readings – Physics Coursework – Monnet

Investigating the relationship between drop height and bounce height when a ball is dropped

Theory

When an object has Gravitational Potential Energy due to its raised position, it will gain Kinetic Energy if it falls. The maximum kinetic energy it can gain is equal to the potential energy it can lose.

image00.png

When the ball hits the ground and then bounces back up again, the amount of potential energy the second time is not as great as from when you first started. This is because of Percentage Energy Loss and Elastic Potential Energy. The Percentage Energy Loss is the second Potential Energy divided by the first Potential energy then multiplied by one hundred.

E.g. PE²

       PE¹   x 100 = Percentage Energy Lost

Energy stored in a stretched or compressed spring is elastic potential energy. When Elastic Potential Energy occurs, sound waves, movement and little heat is made throughout the surface it hits and therefore this can also be a factor I could measure.

Another energy factor I could measure is the Energy Conversion. You can find this out by one simple equation similar to the one before.

E.g. Height 1

       Height 2   x 100 = Energy Conversion

There are also equations to work out the Potential Energy and Kinetic Energy too.

E.

...read more.

Middle

  • Metre ruler stick
  • Ball of some type
  • Pencil and paper to record results

Plan cont.

Now with the basic outline of the plan sorted all we have

to is sort out the variable I will change during the

investigation in order to find the best results to conclude my

prediction or theory.

Here is the list of recordings I will use for the investigation:

Height (m)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

We felt these would be the right amount of results and would give us a wide range of results good enough to prove and test my prediction or theory and be satisfactory enough for our targets. One more factor we had to consider is how we would make the recordings. Of course all you had to do was drop a ball from a certain height and then see how high it bounces back up again, then work out the energy factors involved, but we were faced with another problem. We had to work out, since it was a rounded tennis ball (a sphere), where we would make the recordings from. We had three options to choose from: the top of the ball, the centre of the ball or the bottom of the ball.

...read more.

Conclusion

You can see from the results, that there is the odd value or values out of place, due to the fact that the figure is different to what it should be. This basically means that the naked eye is not always the best option to use for this experiment. To perform this experiment with the utter most perfection, a machine or tool of some type could be used to record the exact height of both height 1 and 2 to perfection. With this you know your results are done properly and no major mistakes were made. Luckily since I had enough results, I could spot where mistakes were made in judging the height 2 of the ball and therefore you can count them as extreme values but mistakes are always going to be made by accident. Therefore there is not much we could have done to have changed this factor.

Another thing I would have liked to have done is to have tried to record the exact mass of the tennis ball, with doing this I can work out Potential and Kinetic Energy at each height and worked out the Potential Energy Loss per result. With this I could have produced more figures in my report which could have supported my prediction with more facts.

...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. How does the height a tennis ball bounce depend on the height the ball ...

    Sellotape (to tape the tape measure to the wall). To make the test fair and accurate: Check the tennis ball for splits, otherwise the ball will not bounce very well and accurate measurements will not be taken if the ball does have splits. Keep the surface that the ball is bouncing on the same so that the ball will not be affected by it when it hits the ground.

  2. The Bouncing Ball Experiment

    Therefore, I predict that the drop height of the ball will be directly proportional to its bounce height. I predict that my graph of results showing this will show direct proportionality, and have a straight line through the origin. Apparatus Needed: One Tape measure One Caliper One set of electronic

  1. physics of the bouncing ball

    The ping-pong ball has the lowest mass closely followed by the bouncy ball. This means there will be less resistance but also less gravitational energy because the mass is less. However the bouncy ball is highly compressible and will retain vast amounts of energy upon impact.

  2. Plan and execute an investigation into the energy changes of a table tennis ball ...

    I also can predict the shape of the graph. The height of the bounce will go along the Y-axis, and the height from which the ball was dropped would go along the X-axis. There will be a curve, and positive correlation.

  1. Heat loss

    I can also see that my graph also interprets this in that the line of best fit for the beaker with card is above the line of best fit for the one without. Also the one with a lid ends at a higher temperature than the one without.

  2. Does the height a ball is dropped from affect its efficiency?

    When you first buy a tennis ball, it is sealed in an air tight container. This is so the ball has more compressed air inside it; this helps it to bounce higher because when the ball is dropped and hits the ground, the air inside is pushed to the top of the ball.

  1. Investigation on the factors that affect the bounce of a ball.

    Also I noticed that the ball being dropped constantly bounced almost at the same height. This made me feel that I could use this as my chosen experiment for further investigations. As mentioned earlier, the bouncing of balls may look simple, but the energy conversions are quite complex.

  2. Investigate the correlation between the height at which a ball is dropped and the ...

    its useful energy during the bounce into wasted thermal energy, and also some of its energy is wasted as sound energy as it hits the ground. Also the height that the ball bounces to will be directly proportional to the height it is dropped from, as the same percentage of

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work