• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

motion and energy

Extracts from this document...


Motion and energy

Speed velocity and acceleration

  1. Speed
  • Average speed= distance moved / time taken
  1. Velocity
  • Speed is a distance travelled in unit time ( scalar )
  • Velocity is a distance travelled in unit time in a stated direction ( vector )
  • Velocity = distance moved in a stated direction / time taken = displacement / time
  • Velocity of a body is constatnt if it moves with steady speed in a straight line
  • Distance moved in a stated direction is also known as displacement
  1. Acceleration
  • It is the change in velocity in unit time
  • Acceleration = change of velocity / time taken for change
  • An acceleration is positive if the velocity increases and negative if it decreases. A negative acceleration is also called a deceleration or retardation
  1. Timers
  • These are timers used to analyse motion
  1. Motion sensors
  • They use the ultrasonic echo technique to determine the distance of the object from thee sensor
  1. Tickertape timer : tape charts
  • One type has a marker which vibrates 50 times a second and makes dots at 1/50 s intervals on the paper tape being pulled through it
  • 1/50 s is called a tick
  • The distance between the successive dots equals the average speed of the object
  • 1/5 s is called a tentick
  • 5 tenticks = 1 second
  1. Photogate timer
  • They are used to record time taken for a trolley to pass through a gate. If the length of the interrupt card is measured, the velocity can be calculated

Graphs and equations

  1. Velocity – time graphs
  • Tape charts are velocity – time graphs which show the velocity changing in jums rather than smoothly.
  • Motion sensors give a smoother plot
  • The area under this graph measures the distance moved
  • The slope or gradient of a velocity time graph shows the acceleration of a body
  1. Distance – time graphs
  • The slope or gradient of this graph shows the velocity of the body
  1. Equations for uniform acceleration
  2. First equation
  • a = v- u / t
  • at = v – u
  • V = u + at
  1. Second equation
  • Average velocity = u + v /2
  • s/ t = u + v/ 2
  • s = (u + v /2) t
  1. third equation
  • s/ t = u + v/ 2
  • = u + u + at / 2
  • = 2u + at /2
  • So, s = ut + 0.5 at2
  1. Fourth equation
  • V2 = ( u+ at)2
  • V2 = u2 + 2uat + a2t2
  • V2 = u2 + 2as

Falling bodies

  • In air a coin falls faster than a piece of paper. This happens due to air resistance having a greater effect on light bodies than on heavy bodies
  1. Acceleration of free fall
  • All the bodies falling freely under the force of gravity do so with uniform acceleration if air resistance is negligible
  • This a is called the a of free fall and is denoted by g
  • It is positive for falling bodies and negative for rising bodies
...read more.


S = 0.5 gt 2G = 2s / t2
  1. Distance – time graphs
  • The graph of s against t is a curved line
  • The graph of s against t2 is a straight line from the origin since s is directly proportional to t2
  1. Projectiles
  • The horizontal and vertical motions of a body are independent and can be treated separately
  • The horizontal distance a projectile travels i.e. its range depends on the speed of projection and the angle of projection. Usually the range is maximum when the angle = 45 

Force and acceleration

  1. Newton’s first law
  • A body stays at rest, or if moving it continues to move with uniform velocity, unless an external force makes it behave differently
  • The smaller the forces that are opposing the motion, the smaller are the forces needed to keep the body in motion
  1. Mass and inertia
  • All matter has a built in opposition to being moved if it is at rest or, if it is moving, to having its motion changed. This property of matter is called inertia
  • The larger the mass of a body the greater is its  inertia i.e. the more difficult it is to move it when at rest and stop it when in motion. Thus the mass of a bosy measures its inertia
  1. Newton’s second law
  • Acceleration is directly proportional toforce an inversely proportional to mass
...read more.


Extensible seat belts exert a backwards forceAir bags inflate and protect the driver from injury by the steering wheelHead restraints ensure that if the car is hit from behind, the head goes forwards with the body and not backwards over the top of the seat

Circular motion

  1. Centripetal force
  • In the case of a whirling ball, the force is provided by the string pulling inwards on the ball. This force needs to be increased if the speed of the ball is increased, if the radius of the circle is decreased and if the mass of the ball is increased
  • F=mv2/r
  • This force which acts towards the centre and keeps a bosy moving ina circular path, is called the centripetal force. If this force is greater than the string can bear, the string breaks and the ball flies off with steady speed in a straight linealong the tangent
  1. Rounding a bend
  • When a car rounds a bend a frictional force is exerted inwards by the road on the car’s tyres, so providing the centripetal force needed to keep it in the curved path
  • If this frictional force is not large enough, skidding occurs
  1. Satellites
  • For a satellite orbiting the earth , centripetal force is: F= mv2/r
  • The orbital period: T=2image05.pngimage05.pngr/v

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Physics Lab - Conservation of momentum

    Even though momentum is conserved in inelastic collisions, one cannot track and measure the kinetic energy as it is converted into other forms. Therefore the momentum may have been conserved, but just not measured as it was converted possibly into heat & sound energy.

  2. An investigation into factors that effect the braking distance of a trolley

    The results also undoubtedly showed a relationship between the increase in ramp and the increase in braking distance of the trolley. There were no strange results (anomalies) within my results table and I think that this was because of the extreme caution and care that I put into making sure that the experiment was set up correctly with careful measuring.

  1. Factors Affecting the Speed of a Car after Freewheeling down a Slope

    Instead of using the ticker timer to measure the speed, I could use a light gate, which will give more accuracy to my results by avoiding the human error in counting the dots on the ticker tape.

  2. Investigating the amazingness of theBouncing Ball!

    store very little and therefore have low resilience. The squash ball , being made of a rubber compound, is of fairly low resilience. Unfortunately, the lower the the resilience of an object, the higher the proportion of energy used in deforming it must be dissipated. When the squash ball is heated up, it has two effects on the

  1. In this experiment I aim to find out how the force and mass affect ...

    The only factors left are the variables I will be experimenting with in this investigation � Primary Experiment - I will be investigating, by varying the height the summit of the ramp is raised off the ground, if the average speed increases or decreases.

  2. Physics of Rockets

    A plug was then made from a piece of cardboard, to go inside the top of the motor chamber to stop the motor from travelling through the body of the motor during thrust phase, and a metal clip attached to stop the motor falling out.

  1. Observing The Law of Conservation of Momentum

    Velocity Mass (� 0.01 g) Momentum A & B 3.94 - 2.345 = 1.595 51 31.9749 1 31.9749 Total Momentum (2 d.p.): 31.9749 Conclusion: Although the momentum before and after the collision in each case aren't exactly the same, we can see that they are very close.

  2. Prove that "Frictional Forces are Surface dependant".

    on the area of contact between them. In other words, if you have two equally heavy books made from an identical material, you need to push just as hard to make them move, even if one book is large and thin (has a large cover)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work