• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3

Pendulum experiment

Extracts from this document...

Introduction

Pendulum experiment Aim: To see the effect length has on a pendulum's period. Prediction: I predict that the shorter the length of string, the shorter the time it takes for the pendulum to complete one period. The longer the length of the string, the longer the time it will take to complete one period. Equipment needed for experiment: -Clamp -Stopwatch -Bob/Ball -Metre ruler -String Obtaining the results: I will be measuring the length of the string in 10s, so that I can obtain a wider range of results. I will then take 10 readings, and calculate the average time of osocilation for each length, making it a fair test. ...read more.

Middle

Time (secs) Average Length (cm) Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 10 0.91 0.87 0.92 0.98 0.92 0.92 20 1.06 1.13 1.1 1.04 1.02 1.07 30 1.3 1.41 1.33 1.33 1.35 1.34 40 1.72 1.32 1.4 1.34 1.38 1.4 50 1.84 1.33 1.7 1.69 1.81 1.67 60 1.7 1.69 1.77 2.03 1.7 2.04 70 1.93 2.13 1.98 1.86 2.28 1.88 80 2.23 2.05 2.02 1.95 1.94 2.04 90 2.29 2.13 2.34 2.25 2.2 2.24 100 2.02 2.34 2.55 2.53 2.41 2.37 Conclusion: From the results I have gathered I can see that the longer the length of the string, the longer it takes for the pendulum to complete one period. ...read more.

Conclusion

If the period for a pendulum of 40cms was 1.4, then the time of the period for the pendulum of 10cms should be 0.7. I tested this theory with my results and found that it was correct, though not entirely accurate, It was roughly the same. The reasons for the average time not being entirely accurate could be a problem with the stopwatch, and also anything measured in this way is not going to be 100% accurate. The results that don't fit the pattern of the rest of the graph are called anomalies. An example of an anomaly on my graph could be for length 60cms. The time suddenly jumps up, but then back down again. This could be a problem with calculating the average or maybe one of the trials was extremely off-target. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Here's what a teacher thought of this essay

This is a 3 star piece of work. The procedure followed would give valid evidence for the question asked. There is little scientific information within the writing. The prediction should not merely say what you think will happen, but to score more highly, why? The conclusion should also be backed up by scientific information.

Marked by teacher Kate Gardiner 13/03/2013

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

Related GCSE Forces and Motion essays

1. The aim of this experiment was to compare the elasticity of arteries and vein ...

4 star(s)

This was then measure and recorded. From here on, 20g weight were added, each time being measured and recorded, until the amount of force applied on the artery reached 300g. Once this was completed, the weights had to be removed, again in 20g increments (from 300g to 0g), so that

2. The Simple Pendulum Experiment

4 star(s)

is the time for 30 oscillations, and R is my reaction time. Reaction Time Experiment. The purpose of this experiment is to determine the time t takes me to stop/start the digital chronometer, so I can use this to determine a time period for one oscillation of the simple pendulum using the equation stated on the previous page.

1. How does the weight of an object affect the friction it has on the ...

I shall now talk in more detail about coefficients of friction, by using my information on limiting equilibrium. If a horizontal force P is applied to an object lying on a horizontal surface, the magnitude of the frictional force is just sufficient to prevent motion.

2. Period of Oscillation of a Simple Pendulum

Gravitational acceleration is the only factor that decides how fast an object may fall in a vacuum. Pendulums with large masses should therefore be no slower or quicker than pendulums with small masses. The data that I collected was not brilliant because the results digressed to such large extents in

1. How does an increased surface area change the time taken for a mass to ...

It seems that from my figures and graph, if height doubles then time does not halve. There is no connection of doubling/halving at all. The large cup cake has taken longer to fall to the ground than the smaller cup as I predicted at given heights.

2. Practical Investigation into the Horizontal motion of a Projectile

There is no horizontal acceleration once the particle leaves the ramp, so the horizontal velocity will remain the same from that point. So: Distance Traveled = Horizontal Speed x Time It would have been extremely difficult to measure the horizontal speed of the projectile accurately.

1. My investigation is about how the number of paperclips added onto a paper spinner ...

Each paperclip weighed 0.43 grams each so the added weight increases by 0.43 when a paperclip is added. The 'average time' in the graph represents the time taken for the spinner to fall to the ground. The weight of spinner is the added weight of paperclips.

2. To investigate the time taken for the pendulum to oscillate for a time period.

Results: Length /cm Period for 10 Oscillations /s 8 5.53 11 6.53 13 7.31 19 8.34 23 9.44 25 9.60 29 10.21 33 11.25 41 12.47 45 13.00 52 13.93 Analysis: The table of results can be used to produce several graphs to visually display various trends and links in this investigation and can be manipulated to give extra information.

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to
improve your own work