• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Pendulum experiment

Extracts from this document...

Introduction

Pendulum experiment Aim: To see the effect length has on a pendulum's period. Prediction: I predict that the shorter the length of string, the shorter the time it takes for the pendulum to complete one period. The longer the length of the string, the longer the time it will take to complete one period. Equipment needed for experiment: -Clamp -Stopwatch -Bob/Ball -Metre ruler -String Obtaining the results: I will be measuring the length of the string in 10s, so that I can obtain a wider range of results. I will then take 10 readings, and calculate the average time of osocilation for each length, making it a fair test. ...read more.

Middle

Time (secs) Average Length (cm) Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 10 0.91 0.87 0.92 0.98 0.92 0.92 20 1.06 1.13 1.1 1.04 1.02 1.07 30 1.3 1.41 1.33 1.33 1.35 1.34 40 1.72 1.32 1.4 1.34 1.38 1.4 50 1.84 1.33 1.7 1.69 1.81 1.67 60 1.7 1.69 1.77 2.03 1.7 2.04 70 1.93 2.13 1.98 1.86 2.28 1.88 80 2.23 2.05 2.02 1.95 1.94 2.04 90 2.29 2.13 2.34 2.25 2.2 2.24 100 2.02 2.34 2.55 2.53 2.41 2.37 Conclusion: From the results I have gathered I can see that the longer the length of the string, the longer it takes for the pendulum to complete one period. ...read more.

Conclusion

If the period for a pendulum of 40cms was 1.4, then the time of the period for the pendulum of 10cms should be 0.7. I tested this theory with my results and found that it was correct, though not entirely accurate, It was roughly the same. The reasons for the average time not being entirely accurate could be a problem with the stopwatch, and also anything measured in this way is not going to be 100% accurate. The results that don't fit the pattern of the rest of the graph are called anomalies. An example of an anomaly on my graph could be for length 60cms. The time suddenly jumps up, but then back down again. This could be a problem with calculating the average or maybe one of the trials was extremely off-target. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Here's what a teacher thought of this essay


This is a 3 star piece of work. The procedure followed would give valid evidence for the question asked. There is little scientific information within the writing. The prediction should not merely say what you think will happen, but to score more highly, why? The conclusion should also be backed up by scientific information.

Marked by teacher Kate Gardiner 13/03/2013

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Marked by a teacher

    The aim of this experiment was to compare the elasticity of arteries and vein ...

    4 star(s)

    This was then measure and recorded. From here on, 20g weight were added, each time being measured and recorded, until the amount of force applied on the artery reached 300g. Once this was completed, the weights had to be removed, again in 20g increments (from 300g to 0g), so that

  2. How does the weight of an object affect the friction it has on the ...

    I shall now talk in more detail about coefficients of friction, by using my information on limiting equilibrium. If a horizontal force P is applied to an object lying on a horizontal surface, the magnitude of the frictional force is just sufficient to prevent motion.

  1. This investigation is about what factors affect friction.

    On the following page is the graph for the weight against the force. ANALYSIS OF RESULTS From my results I know that as the weight increased, the force needed to move the object increased. This means that the weight is directly proportional to the force.

  2. Period of Oscillation of a Simple Pendulum

    Gravitational acceleration is the only factor that decides how fast an object may fall in a vacuum. Pendulums with large masses should therefore be no slower or quicker than pendulums with small masses. The data that I collected was not brilliant because the results digressed to such large extents in

  1. How does an increased surface area change the time taken for a mass to ...

    This is because the larger surface area causes more friction with the air particles in the air giving it a larger air resistance. This means that the acceleration would be slower than the smaller cup cake as shown by the less steep curve at the start of the graph.

  2. Determining the acceleration due to gravity by using simple pendulum.

    Connect the release mechanism and the pad base on the floor with a timer. 3) Place the both the releaser and the receiver of the ball at a desirable length and make sure the time on the stopwatch or a digital stopwatch (or any source of a timer)

  1. The Physics of Paper Helicopters

    To improve accuracy, I will take each reading three times and take an average. As one of the variables that I will be measuring is the height from which the helicopter is dropped, I will set up a tape measure, and drop the helicopter from intervals of 1 meter.

  2. Practical Investigation into the Horizontal motion of a Projectile

    Hypothesis To create a successful mathematical model of this scenario, I will not consider the air resistance of the particle. Air resistance would not be very significant due to the fact that I am using a ball bearing of fairly high density.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work