• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15

Rates of Reaction

Extracts from this document...


Investigating how concentration, surface area, temperature and a catalyst affect the rate of reaction Aim: The aim of this investigation is to see whether, the concentration of HCL acid affects the rate of reaction between the HCL and a strip of magnesium. Hypothesis: I believe that when the concentration is at its highest and strongest the rate of the reaction will be at its fastest, and that when the concentration is at its lowest and weakest the rate of the reaction will be at its slowest. I predict that when the concentration is at its highest it will collect the designated amount of gas in the fastest time, while when the concentration is at its lowest it will collect the designated amount of gas in the slowest. This can be explained scientifically, using an explanation of "The Collision Theory" and explaining some of the factors that affect the rate of reaction. For a reaction to take place, the particles of the substances reacting have to collide. If they collide, with enough energy then they will react. The minimum amount of kinetic energy that two particles need if they are going to react when they collide is called the activation energy. So there are two ways to increase the rate of reaction: 1). Increase the number of collisions. 2). Increase the amount of kinetic energy. Here in this experiment what I am doing is that I am increasing the number of collisions. This is done by increasing the strength of the concentration of the HCL acid. Increasing the concentration of the acid means that there are more particles of the acid available for reacting in the same volume. In turn, this will allow for more collisions to occur due to the fact that there are more particles available for the other reactant's particles to collide with, this will increase the percentage of successful collisions due to the basic facts that there more particles in the same volume. ...read more.


Temperature is one of the factors which affect the rate of reaction. The temperature gives energy to the particles; this allows them to move faster within the solution. This will lead to two things: 1). Increasing the amount of collisions. 2). A greater percentage of successful collisions. Here as the particles are moving faster, they are going to hit more particles in a faster time, this will also lead to an increase in percentage of successful collisions as there are more collisions occurring. Secondly, it would increase the percentage of successful collisions by giving the particles more energy, this would mean that it is likely that any collision would be successful because the particle would most likely have a greater energy than the activation energy. So the reason we would control this variable is to ensure that in all the experiments, the particles would have the same energy available for reaction, and that no experiments would have an advantage over another experiment. We controlled this variable by carrying out all the experiments in the same room and on the same day. This controlled the temperature because the temperature in the room was constant, and if it varied, it only varied by one or two degrees, this wouldn't have any effect on the particles in the experiment. Keeping all the experiments on the same day ensured that the general temperature of the atmosphere stayed the same, thus not inhibiting or enhancing any experiment. It also ensures that the rate of reaction is only dependant on one thing and that is the concentration of the acid. Volume of gas collected - It is important to keep the same amount of gas collected for one reason, there can only be one input variable in this experiment and that is the concentration of the acid. So the amount of gas collected must be kept the same, also as the point of the experiments is to measure the rate of reaction, the gas collected must stay the same in ...read more.


4. Prepare the strip of magnesium that will be used in the experiment. 5. Measure out 50 cm3 of HCL, and pour it into a boiling tube and put that into the water bath, place the thermometer in the boiling tube, observe the thermometer until the target temperature is achieved. 6. Once the temperature desired has been achieved, immediately remove it from the water bath, the pour the HCL into the Buchner flask, add the magnesium strip and immediately place the bung, start the stopwatch immediately after placing the bung. 7. Observe the gas syringe until 50 cm3 of gas are collected, when this is achieved, immediately stop the stopwatch. 8. Repeat steps 1-6 with 5 different temperatures. Use the same block of CaCO3 so that the same surface area is maintained, therefore remaining controlled. Data Collection: Concentration of HCL: 2 mol/dm3 Volume of Gas Collected: 50 cm3 Temperature (�C) (� 1�C) Time (s) 25 49.84 35 34.05 45 27.81 55 25.22 65 21.47 Several factors were observed during the course of these experiments. It was noticed that as the HCL was poured into the Buchner Flask, some of the solution splashed onto the sides and was never reacted. It was also noticed that, some gas did escape from the flask from the time the CaCO3 began to react and when the bung/stopper was placed. Data Processing: From the information that I have acquired, I must find the rate of reaction for each of the different experiments. The rate of a reaction is found by dividing 1 by the time taken (in seconds) for the reaction to be completed --> (1/s). Temperature = 25 --> time= 49.84 --> 1/49.84 = 0.02006 = 35 --> time= 34.05 --> 1/34.05 = 0.02937 = 45 --> time= 27.81--> 1/27.81 = 0.03596 = 55 --> time= 25.22 --> 1/25.22 = 0.03965 = 65 --> time= 21.47 --> 1/21.47 = 0.04658 Temperature (�C) (� 1�C) Rate (1/(s)) 25 0.02006 35 0.02937 45 0.03596 55 0.03965 65 0.04658 Graph of Temperature vs. Rate: ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Patterns of Behaviour section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Patterns of Behaviour essays

  1. Marked by a teacher

    The Effect of Concentration on the Rate of Reaction between Magnesium [Mg] and Hydrochloric ...

    4 star(s)

    EQUIPMENT LIST Name Picture Explanation Bowl The bowl is used when you are submerging the test-tube in the water, as you insert the delivery tube through the beehive shelf and into the measuring cylinder. We do this to capture the gas to measure the rates of reaction.

  2. Investigating the Rate of Reaction Between Hydrochloric Acid (Hcl) and Magnesium (Mg).

    So the rate of reaction would be faster when the volume of gas formed is higher and the time taken to reach this, lower. This can be seen by the gradients of each curve. The higher the gradient the higher the rate of reaction.

  1. Rates of reaction between Magnesium and HCl.

    Repeat the experiment for each concentration starting from 1M, 0.9 0.8,0.7... 0.1M. To calculate and alter the concentration mix the acid with water, as shown below: Diluted concentration = Volume of acid x Original concentration Total volume For example, 45cm� of 1M acid and 5cm� of water.

  2. Rates of Reaction experiments

    For Example: In an experiment with different sized marble chips and HCl the rate of reaction is faster when the marble chips have there largest surface area, when they are in powder form. The rate of reaction is slowest when the surface area is at its highest, when the marble is in a solid block.

  1. Find out how different concentrations of HCl affect the rate of the reaction with ...

    The half life of a first order reaction is the same wherever it is measured on a concentration-time graph. The half life for a second order reaction is not constant. The half life is inversely proportional to the starting concentration. THE EFFECT OF TEMPERATURE ON THE RATE OF THE REACTION.

  2. Investigating making Epsom salts by varying the rates of reaction.

    Apparatus that will be used when conducting this experiment: * Conical flask * Delivery tube * Rubber bung * Wooden blocks * Water bath * Measuring tube In this experiment I will be measuring the reaction every 30 seconds up to 210 seconds.

  1. Rates of Reaction - HCl + Mg

    This will ensure that all the acids will be at room temperature. Also, I must not use a catalyst or use a catalyst for all of them and use the same amount. Furthermore, I must use the same type of acid because it is the hydrogen in the acid that

  2. How does the concentration of HCl affect the rate of reaction with CaCO3?

    We also changed the amount of hydrochloric acid to 10ml; we noticed that this produced the same results when we were using 20ml of hydrochloric acid. We ended up using 0.5 grams of marble chips because at 2m of hydrochloric acid (highest concentration)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work