• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

The aim of this investigation is how the resistance of a nichrome wire changes as the length of the wire changes.

Extracts from this document...

Introduction

Sohail Ali 10.403/04/01

Science Coursework

An Investigation on Resistance of a Wire

Aim

The aim of this investigation is how the resistance of a nichrome wire changes as the length of the wire changes.

Background Knowledge

Ohms law states a relationship between voltage (V), current (I) and resistance (R). If the voltage is increased then more current will flow, but if the resistance is increased this will decrease the flow of the current.

        This is because the resistance is conflicting with the flow: it makes it difficult for the electrons to pass around the circuit therefore slowing the flow down.

        The voltage is in fact a driving force, pushing the current around the circuit. The voltage supplies the push for the current to pass around the circuit and pass the resistance in the circuit; the amount of resistance and voltage decides how the amount of current passing through the circuit. If two of the three principles are available, then the following formula may be used to calculate the third.

V = IR

Resistance is proportional to the length of wire, this according to various textbooks. Therefore a prediction should consist of; the greater the length of wire the higher the resistance.

...read more.

Middle

4) Keep everything constant except the length of wire.

5) Switch on the circuit for only a short time (Otherwise the                     wire would have got hot and resistance would increase, therefore making the test unfair)

6)  Read the current using the ammeter.

7) Read the voltage using the voltmeter.

8) Record results in a table.

9) Worked out the resistance using Ohms law:

Resistance (Ω) = voltage across wire (V), current through the wire (I).

10)        Repeat this method, now simply

...read more.

Conclusion

Ω). This also backed up my prediction.

Evaluation

I think my results were as accurate as they could be, as the readings were rounded up to 2 dp. So the results weren’t 100% accurate.

I think that the experiment was generally a fair test but in some ways it wasn’t for example the length of the wire was not always exact maybe a couple of mm difference. Temperature is one of the key factors of resistance; for example in our experiment the temperature of the wire was high therefore the resistance become greater. It affects the resistance by making it higher as the electrons move faster at higher temperatures. I don’t think this experiment could be made any fairer as we did everything that we could to make this a fair test because the only way to make the experiment fairer was to be more accurate with the measuring of the wire. There are many different ways of extending our work to get more answers on the different affects on resistance. One way is by seeing how the thickness of a wire would affect the resistance. Or by experimenting with different materials and how they affect resistance.

...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. Marked by a teacher

    Resistance Aim: my main aim is to investigate the factors that affect the resistance ...

    3 star(s)

    And the second advantage is that more components may be added in parallel without the need for more voltage. Lastly , we already know that the more components connected in a parallel, the more the energy is used.

  2. Investigating how the resistance of Nichrome wire depends on its length

    increased then the voltage is being determined by a higher W and will also increase. And so as V increases, then using the formula; R = V/I, we can say resistance will also increase (by using the collision theory). So I am also predicting a directly proportional relationship between R

  1. An in Investigation into the Resistance of a Wire.

    I could also investigate the wires E22 and E24. Main experiment Investigating the factor cross sectional area Diagram = Main power supply = variable resistor = Ammeter = wire = Voltmeter = crocodile clip Method I learnt from my pilot investigation and main experiment for the cross sectional area is

  2. How does the resistance of Nichrome wire change as its length changes?

    Each time we placed a new length of wire we timed it to make sure that the current was only flowing for 30 seconds. Once we did this we wrote down the measurement that was on the ammeter and the voltmeter and then we repeated the procedure for the other five lengths of wire.

  1. Resistance of a Wire Investigation

    They are by no means that far off but in an experiment such as this, which is generally a very accurate one anyway, such anomalous results should not be quite so common. Possible explanations for these anomalies are as follows: The length of wire for that particular measurement was not correct.

  2. An experiment to find the resistivity of nichrome

    of the material , so if there is a larger number of atoms there will be a larger number of collisions which will increase the resistance of the wire. If a length of a wire contains a certain number of atoms when that length is increased the number of atoms will also increase.

  1. The aim of this experiment is to investigate how a change in the length ...

    I did have a lot of trouble tuning the variable resistor, as the band was so minute it was an intricate process to get a specific voltage. This never showed up in the results because the equipment I have is not that accurate.

  2. Resistance in a Wire Investigation

    The factors that I will keep the same are: i) the temperature (although the resistance in constantan is quite constant over a wide range of temperatures.) ii) the thickness of the wire iii) the type of wire When measuring the resistance in the thickness of the wire, the independent variable is the thickness and the dependant variable is the resistance.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work