• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12

The effect of changing the concentration of the Enzyme catalyst on the Rate of Reaction on Hydrogen Peroxide

Extracts from this document...

Introduction

The effect of changing the concentration of the Enzyme catalyst on the Rate of Reaction on Hydrogen Peroxide Planning Hydrogen Peroxide Water + Oxygen 2H2O2 2H2O + O2 Introduction - Background Information To help me understand what a chemical reaction is or involves I did some research. A chemical reaction is a process by which atoms or groups of atoms are redistributed, resulting in a change in the molecular composition of substances. Enzymes are a biological catalyst, which controls a cellular reaction, they are proteins that act as a catalyst. A catalyst is a substance that speeds up a reaction but does not get used up. It works by reducing the Activation Energy, which is the minimum energy needed for a reaction to happen. A catalyst can make a reaction occur even if it would not happen other wise. Enzymes only affect the speed at which a product is formed, not how much is produced. Enzymes are specific, this means that once an enzyme has acted on one substance it will not act on a different one. There are two reactions which involve enzymes they are anabolic and catabolic. An anabolic reaction is a build up of smaller molecules into larger molecules. A catabolic reaction is the speeding up of the reaction time but is the breaking down of a substance. ...read more.

Middle

This is because they are the most sensible and more accurate set of apparatus compared to the method of counting the bubbles that were produced. It was very inaccurate because the bubbles were produced to fast in some cases. I will use the potato as the pea was too slow and the liver was too fast too take accurate readings. I will use 1cm lengths of potato to increase the surface area and increase the number each time. I will use 20cm3 of Hydrogen Peroxide. I will take 7 readings at intervals of 30 seconds, this gives enough time to read the result and for the reaction to take place. I will take two repeats of each number of 1cm potatoes; this will make sure I will have some reliable readings. I will be measuring the amount of oxygen produced. 1 will take all the cylinders of potato from the same potato, as all potatoes are different in concentration and enzymes etc. so I kept mine the same. Method 1. Prepare a water bath for the test tube that will contain the Hydrogen Peroxide and one for where the gas will be collected via the delivery tube. 2. Measure out 20cm3 of Hydrogen Peroxide and pour it into the test tube. 3. Fill up the gas burette with water and then place in the second water bath without letting gas into the burette. ...read more.

Conclusion

I have one anomalous result, which I have circled on my graph. This could have been caused by I feel my results are quite accurate. However the error bars are fairly big. It is reasonably close to the best-fit line, although it does not follow the same line. The best-fit line is steeper than the predicted line. To work out how accurate my results are I can work out the % error and % accuracy:- % Error = Difference in rates x 100 Average rate % Accuracy = 100- the % error Errors within my experiment The potato pieces were sticking together which results in a lower surface area. I could not be exact in cutting the potato pieces exactly the same size every time. Also I had to do the experiment over a period of two days. The first day I did the experiment the temperature was hotter than the second day. So on the first day the reaction would have been quicker due to the collision theory. Improvements that could be made To reduce the risk of the potato pieces sticking together I could have used a larger boiling tube. This would have meant that the potato pieces were further away from each other. To make sure they were equal sizes I could have used a cutter that was set to 1cm. To keep the temperature the same I could allow a longer time to do my experiment in, so I would finish it on the same day that I started it. Jennifer Hooper 2 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Patterns of Behaviour section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Patterns of Behaviour essays

  1. Factors Affecting Enzyme Activity

    0.0 30.0 32.0 32.0 32.0 32.0 32.0 32.0 Amount of gas given off using 1cm3 of liver suspension and 5cm3 of hydrogen peroxide(cm3) 0.0 18.0 26.0 34.0 36.0 36.0 36.0 36.0 Amount of gas given off using 0.5cm3 of liver suspension and 5cm3 of hydrogen peroxide(cm3)

  2. THE EFFECT OF BILE SALT ON THE ACTION OF THE ENZYME LIPASE

    droplets varied in different experiments, this may have been due to the age of the sodium carbonate of perhaps a result of the particles settling in the solution. My second preliminary investigation was to acknowledge the affect of temperature on the rate of reaction allowing me to decide on the

  1. To determine the rate law for a chemical reaction among hydrogen peroxide, iodide and ...

    = [(1/74) / (1/118)] =1.5946 According to Arrhenius Theory, the rate constant of an experiment should equal to k = A exp [Ea/RT] where A is a proportionality constant, Ea is the activation energy of the process, R is the ideal gas constant (8.314J/K mole), and T is the temperature in Kelvin.

  2. Investigating the effect of enzyme concentration on the hydrolysis of starch with amylase.

    In each solution of amylase and starch, add ten drops of Benedict's solution. I will then put the five test tubes in the waster bath at 80 c, this will give the solution enough time to change colour. If the solution turns orange, green, or even yellow, sugar is present.

  1. Effect Of Substrate Concentration On The Activity Of Catalase

    thermometers etc, the readings are taken with the graduated markings at eye level, so as to minimise the risk of inaccurate readings. 4. All boiling tubes etc. must be washed thoroughly with water after their use, so as to minimise the chance of contamination.

  2. Investigate various ways of increasing the rate of a chemical reaction and evaluate which ...

    However the Arrhenius equation was shown to have many discrepancies. Thus Henry Errying8 came up with a more sophisticated theory known as the transition-state theory, which takes in to account other things such as molecular orientation. The peak of the energy profile, where the reactants have a high energy is

  1. The Effect of Catalase in the Breakdown of Hydrogen Peroxide

    Due to this, it is most advisable to make sure that equipment used is clean and dry before beginning the experiment. Therefore, a more fair and valid reaction can take place and with it data is correct. This is also considered when using the same equipment twice - data can be corrupted and imprecise.

  2. The effect of concentration on the activity of catalase.

    Figure 5 shows a molecule of Hydrogen peroxide. Plants release the hydrogen peroxide in response to the presence of a fungal invasion, which attacks by piercing the wall of a plant and breaking it down. Pectinase is a digestive enzyme derived from funguses called Aspergillus and Penicillum. It is used for the break down of the cell wall.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work