• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2

# The mechanical principals of movement

Extracts from this document...

Introduction

Matt Arnold

The mechanical principals of movement

Acceleration is a vector (‘Vectors are quantities which are fully described by both a magnitude and a direction.’ (Tom Henderson, 1996) quantity, which is defined as ‘the rate at which an object changes its velocity.’ (Tom Henderson, 1996) An object is accelerating if it is changing its velocity. It is calculated in this equation

A = (vf – vi) / t, where A =         average acceleration

Vf =         Final Velocity

Vi =         Initial velocity

T  =         Time taken

If we slow down this is known as deceleration, as a person gets faster then they are accelerating. In order to produce acceleration, a force must be applied to the body, the bigger the force the bigger the acceleration, the bigger the mass the slower the acceleration. A 100m sprinter will keep accelerating, until he/she will reach their constant speed, this is where they are neither accelerating nor decelerating.

Middle

For example:

A 100metre sprinter speeds up their velocity from 5 mph to 15mph, in a time period of 5 seconds; therefore we use the formula to calculate there average their acceleration. (vf – vi ) = (5 – 15) = 10 / 5 = 2 ms-2 (it is calculated in metres per second per second). The opposite of accelerating is deceleration. They are also known as positive and negative acceleration.

Although speed and velocity are similar they do have some similarities, speed represents how fast an object is going, velocity represents, the rate of change of displacement with time but has the same units as speed however. For example a marathon runner is running at 10mph this is known as speed, however if you say they are running at 10 mph in a southerly then you talking about its velocity.

Velocity is a vector quantity, which refers to ‘the rate at which an object changes its position.’ (Tom Henderson, 1996)

Conclusion

Author Unknown, 2004, http://www.physicsclassroom.com/Class/1DKin/U1L1d.html [Accessed, 03/01/06]

Tom Henderson, 1996, http://www.glenbrook.k12.il.us/gbssci/phys/Class/1DKin/U1L1e.html [Accessed 03/01/06]

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to
improve your own work