• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11

To determine the water potential of potato tuber tissue

Extracts from this document...

Introduction

To determine the water potential of potato tuber tissue Introduction Osmosis is the net movement of water down a gradient of water potential through a partially permeable membrane until the water potential gradient is constant. When a tissue looses water, it looses mass, and so we can take a measure of how much osmosis has taken place by weighing the tissue before and after it spends time is solution. If there is no mass change then the potato tissue will have the same water potential as the external solution, and so the two water potentials are in equilibrium, and there is a flat gradient of water potential. The formula for the water potential of a plant tissue is written: as the water potential equals the solute potential added to the pressure potential (from Biology 1 by OCR): ? = (+)?p + (-)?s The units for these values are recorded in KPa. Osmosis occurs until there is no net movement of water, because the water potential is equal on both sides of a partially permeable membrane. Preliminary Work I conducted a pilot study before I planed my actual experiment to gauge what sort of length potato to use and to see if my values for sucrose molarity were adequate. For my GCSE coursework I conducted an experiment to see the effect of varying the surface area of potato chip in sucrose solution. I used a 1M sucrose solution and the potato chips lost about on average about 0.6g, for chip volumes varying from 2cm3 to 8cm3, left in solution for 45mins. This is quite substantial so I decided to make my dilutions from 1M and diluting it sufficiently. I found from previous experiments that the water potential for a potato tuber would be about 0.3M, so I chose a range from 0.3M up to 0.5M, using distilled water as a control. From various Internet sources (www.essaybank.co.uk), I found that the water potential can differ allot from different potatoes, and so I could not quote any source for this. ...read more.

Middle

I have volumes above 10cm3, which is what the pipettes go up to, and so is the next most accurate thing to use. It is much easier to use than a larger pipette, and quicker. Accuracy to 1cm3 is fine for large volumes Beaker To hold the sucrose solutions and water. It is large enough to hold the volumes of water and sucrose that I need, so I don't have to constantly refill from stock solutions. Ruler To measure and then cut the potato chips to 3cm length. All the potatoes need to be the same length, and so an average ruler is the easiest thing to use to measure the potato chip lengths. Cutting Board To cut and core the potato on. The corer and blade are sharp and it would be unsafe to use them into a hand. The lab benches may be dirty, and so we must cut onto something clean. Dilutions Table for different solute potential solutions. Concentration/M Volume Of H2O/cm3 Volume of 1M Sucrose/cm3 Final Volume/cm3 0 17 3 20 0.2 16 4 20 0.25 15 5 20 0.3 14 6 20 0.35 13 7 20 0.4 12 8 20 The range of my independent variable is based around the water potential of the potato tuber tissue. It would be difficult to make the solutions accurate to more than 0.05M, and so I chose two readings above and below the expected 0.3M, and used distilled water as a control. I shall repeat my readings two times each, so that I can see if there is a pattern, and to see if there are any anomalous readings. For example, if two readings are the same and another is wildly different. If I encounter a result, which is far away from two others in a solute potential range, then I will not include it when I average my results. To be wildly different I would expect it to be 0.1g to 0.15g away from the other two readings. ...read more.

Conclusion

The graduating cylinders only measured to the nearest 1cm3, which is not very accurate, but should not have affected my results too much, as I was using large volumes. However, I could have used pipettes, it would have been much more accurate, to the nearest 0.05cm3, this would have made my measurements much more accurate. I did two repeats for each value of solute potential for my results, and I believe this to be sufficient, as my results were all consistent between readings within a molarity range. The change in the % mass change within a range is a maximum difference of 1.3% (see results table). The maximum difference in the -970KPa range is only 0.1%, which is very small, and so seems reliable. Vertically, the results change at a seemingly constant rate, which can be seen from my graph, comparing results with my best fit line, which is what I predicted, and this supports my prediction well. All of the errors in my experiment would have affected my results, however, I believe that the blotting error was the main error overall. It needed to be controlled, because it could significantly affect the mass of my chips if there was excess liquid, or if too much had been taken out while blotting. I tried to have consistent blotting, and so any error due to too much or too little blotting is likely to be minimal given that the error is quite likely to be consistent. The improvements I can put to my method, especially to the blotting error would benefit the experiment. With blotting at exactly the same extent the excess water will not contribute to the mass change and so the results will more truly reflect my independent variable. There uncertainties certainly affect my results, but the question is, how valid can a conclusion drawn from them be? The errors will obviously affect my results, and make them harder to draw conclusions from. However, the results agree with the preliminary work I conducted and are consistent with each other, and I think I can be quite firm in my conclusions. Michael Hutton-Ashkenny ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Life Processes & Cells section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Life Processes & Cells essays

  1. Marked by a teacher

    Investigating the effect of Sucrose Concentration on the Rate of Osmosis in Potato Chips.

    5 star(s)

    The ruler, only measuring length, will not take into account that the width of each potato chip might change due to the effect of sucrose concentration. The balance will show a change in mass because the area of the potato chip is noted for when it exhibits the mass, whereas

  2. Marked by a teacher

    To determine the water potential of a potato tuber cell using varying salt solution.

    5 star(s)

    higher then inside the cell, and as we know water moves from a region of high potential to a region of low water potential. Here the cell will gain mass according to the definition of osmosis. I predict that for the potato cells placed in between the concentrations of 0.00

  1. Marked by a teacher

    An Experiment to determine Water Potential in Potato Tissue.

    4 star(s)

    If too much water leaves the cell it shrinks and becomes plasmolysed. Variables There are a number of variables in this experiment: 1. The concentration of the sucrose solution- to measure the different amounts of liquids I used a graduated pipette instead of a syringe, because it is much more accurate.

  2. Aim To determine the water potential of a potato tuber cell

    The potato within the 1 molar concentration will decrease in mass because of osmosis as water will move from a high water potential (which is the external solution) to lower water potential (which is the potato cell). Therefore the potato cell will have lower water content that will decrease in mass and size.

  1. Investigation to compare the water potential between potato chips and carrot chips.

    chip would decrease and as the concentration of sucrose decreased the weight of the potato chip would increase from its normal weight. This was the basic prediction that was deducted. I required the following apparatus to carry out my preliminary work: 1.00M sucrose, 2 Beakers - to hold sucrose solutions and water, Water, Cork borer (4mm)

  2. Investigate the water potential of potato tissue and compare this with the water potential ...

    If a cell is placed in a solution where the water potential is higher inside the cell, the cell will lose mass as water moves out of the cell through the partially permeable plasma membrane by osmosis. In plant cells, the water potential of a cell depends on two factors: the solute potential and the pressure potential.

  1. An Investigation to determine the Water potential of Potato cells.

    Therefore the water potential of the potato cells can be found by placing the potato tissue in an external solution, which produces no change in mass or length in the tissue. The osmotic potential can be found by balancing the tissue with an external solution, which produces incipient plasmolysis.

  2. Determine the solute concentration of potato tissue

    Main Experiment Method Cut the potato cylinders to the correct sizes (e.g. 5cm in length and 0.6cm in width), so that every potato cylinder is the same size and this will help me to create a very fair experiment. Then I will dry them out using paper towels so that it doesn't affect the weight with surplus water.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work