• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

To investigate how enzyme concentration can affect the rate of reaction, in this case the breakdown of milk protein by trypsin, a protease enzyme.

Extracts from this document...

Introduction

Biology - Activity 2.10 Enzyme concentrations and enzyme activity Aim To investigate how enzyme concentration can affect the rate of reaction, in this case the breakdown of milk protein by trypsin, a protease enzyme. Hypothesis 1. The higher the concentration of trypsin, the higher the rate of breakdown of milk protein. Reason: with higher concentration of enzyme, there are more active sites available for the substrate molecules to bind with. When there are more enzymes, the collision between enzymes and substrates becomes more frequent, increasing the chance of forming enzyme-substrate complex. 2. Increase in rate of reaction is directly proportional to increase in trypsin concentration. Reason: enzyme concentration exerts a direct effect on the rate of reaction. Apparatus o Milk o Trypsin o 3 Syringes o 5 test tubes o test tube rack o 5 stopwatches o Distilled water Procedure In this experiment, the rate of reaction is determined by the time taken for a given quantity of substrate to be used up: 1. ...read more.

Middle

4. Tap the bases of the test tubes to mix the solutions. 5. Measure the time needed for the milk to turn clear in each test tube. Variables Independent variable Dependant variable Controlled variable Concentration of trypsin Time Temperature Volume of milk Volume of trypsin-water solution Test tube A is a control. Explanation: Test tube A contains distilled water only. It ensures that the clearing of milk in other tubes is due to enzyme activity only and not any other factor. Risk and safety precautions Take care handling glassware. Results Test tube Vol of trypsin/cm3 Vol of distilled water/cm3 Time/s Trypsin concentration/% Reaction rate=1/T A 0 2.0 0 0 B 0.5 1.5 550 25 0.001818182 C 1.0 1.0 364 50 0.002747253 D 1.5 0.5 297 75 0.003367003 E 2.0 0 242 100 0.004132231 Two graphs are plotted. ...read more.

Conclusion

2. Increase in reaction rate is proportional to increase in trypsin concentration. Reason: increase in the number of trypsin molecules results in a proportional increase in the number of enzyme-substrate complexes and therefore a proportional increase in the rate of reaction. Limitations and error 1. This experiment does not measure the initial rates of reaction because the quantity of product formed in a fixed period of time from the breakdown of milk protein is not easily observable. Instead, average rates of reaction are measured by determining the time needed for all milk protein to react, i.e. for the reaction to complete. A graph of average rate of reaction against trypsin concentration does not show an accurate straight line. 2. Tapping and shaking the test tubes too vigorously added kinetic energy to the trypsin and milk proteins, making temperature, the controlled variable, not constant. Improvement Shake the test tubes slowly. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Patterns of Behaviour section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Patterns of Behaviour essays

  1. Investigation On The Enzyme Trypsin

    Average Time taken for reaction Temperature (�C) Reading 1 Reading 2 Reading 3 (Nearest second) 30 365 354 361 360 40 103 105 101 103 50 90 88 89 89 60 80 78 80 79 70 69 70 71 70 Table showing the time taken for the trypsin to digest

  2. Factors Affecting Enzyme Activity

    This will make the reaction take place very quickly as all of the substrate molecules will collide with the enzymes quicker than with a lower concentration of enzymes. I therefore predict that as I increase the concentration of the suspension the reaction will take place quicker due to the larger amount of enzymes in the reaction.

  1. Investigation into the digestion of milk by Trypsin.

    in the rate of reaction dropping to nothing as the temperature continues to rise past the enzymes point of denaturisation. I believe that similarly the rate of reaction will be proportional to the pH level until the pH rises past the optimum value of the enzyme.

  2. Investigating the effect of enzyme concentration on the hydrolysis of starch with amylase.

    The results show effect of enzyme concentration on the time it takes for the hydrolysis of starch to occur. Experiment number Time taken for reaction in 0.5% amylase in seconds Time taken for reaction in 0.75% amylase in seconds Time taken for reaction in 1% amylase in seconds Time taken

  1. Effect Of Substrate Concentration On The Activity Of Catalase

    The PH of the reactants should be kept constant. This will not be hard to ensure as the PH of the reactants does not vary significantly during the course of the reaction. 2. The temperature of the reactants will have to be kept constant during the reaction. This is a variable which will be harder to control.

  2. To investigate the effect of ph on the activity of trypsin.

    The juice that the pancreas secretes is alkaline so the ph that works best should also be alkaline. The temperature won't affect the reaction as I am going to keep it as the same temperature throughout the experiment. This is what I think will happen as the ph increases the

  1. THE EFFECT OF BILE SALT ON THE ACTION OF THE ENZYME LIPASE

    Keep on adding drops of sodium hydroxide using a �0.05 pipette, for each trial and for each concentration, until data logger reaches to pH10. Preliminary This stage of my coursework was conducted to ensure that I chose the best and most accurate method for my actual experiment.

  2. The Effect of Catalase in the Breakdown of Hydrogen Peroxide

    hypothesis in saying that more enzymes increase the rate of the reaction. I found that there was one anomalous result that occurred after 4mins, the VO2 produced was at 3.3cm3. In the experiment where I used 30% of catalase, the rate of the reaction increased, in comparison to the 20%.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work