• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

To investigate how enzyme concentration can affect the rate of reaction, in this case the breakdown of milk protein by trypsin, a protease enzyme.

Extracts from this document...


Biology - Activity 2.10 Enzyme concentrations and enzyme activity Aim To investigate how enzyme concentration can affect the rate of reaction, in this case the breakdown of milk protein by trypsin, a protease enzyme. Hypothesis 1. The higher the concentration of trypsin, the higher the rate of breakdown of milk protein. Reason: with higher concentration of enzyme, there are more active sites available for the substrate molecules to bind with. When there are more enzymes, the collision between enzymes and substrates becomes more frequent, increasing the chance of forming enzyme-substrate complex. 2. Increase in rate of reaction is directly proportional to increase in trypsin concentration. Reason: enzyme concentration exerts a direct effect on the rate of reaction. Apparatus o Milk o Trypsin o 3 Syringes o 5 test tubes o test tube rack o 5 stopwatches o Distilled water Procedure In this experiment, the rate of reaction is determined by the time taken for a given quantity of substrate to be used up: 1. ...read more.


4. Tap the bases of the test tubes to mix the solutions. 5. Measure the time needed for the milk to turn clear in each test tube. Variables Independent variable Dependant variable Controlled variable Concentration of trypsin Time Temperature Volume of milk Volume of trypsin-water solution Test tube A is a control. Explanation: Test tube A contains distilled water only. It ensures that the clearing of milk in other tubes is due to enzyme activity only and not any other factor. Risk and safety precautions Take care handling glassware. Results Test tube Vol of trypsin/cm3 Vol of distilled water/cm3 Time/s Trypsin concentration/% Reaction rate=1/T A 0 2.0 0 0 B 0.5 1.5 550 25 0.001818182 C 1.0 1.0 364 50 0.002747253 D 1.5 0.5 297 75 0.003367003 E 2.0 0 242 100 0.004132231 Two graphs are plotted. ...read more.


2. Increase in reaction rate is proportional to increase in trypsin concentration. Reason: increase in the number of trypsin molecules results in a proportional increase in the number of enzyme-substrate complexes and therefore a proportional increase in the rate of reaction. Limitations and error 1. This experiment does not measure the initial rates of reaction because the quantity of product formed in a fixed period of time from the breakdown of milk protein is not easily observable. Instead, average rates of reaction are measured by determining the time needed for all milk protein to react, i.e. for the reaction to complete. A graph of average rate of reaction against trypsin concentration does not show an accurate straight line. 2. Tapping and shaking the test tubes too vigorously added kinetic energy to the trypsin and milk proteins, making temperature, the controlled variable, not constant. Improvement Shake the test tubes slowly. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Patterns of Behaviour section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Patterns of Behaviour essays

  1. Factors Affecting Enzyme Activity

    Therefore I predict my second graph to be a straight line. I do not believe it will travel through the origin due to the gas displaced initially when I inject hydrogen peroxide so I expect my graph to look like this: Preliminary Experiments I have decided to conduct a series

  2. Enzymes - show how substrate concentration affects the rate of reaction for an enzyme ...

    So therefore I will be using a burette instead of a measuring cylinder, mainly because the scale division is larger. This is because, the larger the scale division, the lower the percentage error which will result in providing me with more accurate and reliable results.

  1. Investigating the effect of enzyme concentration on the hydrolysis of starch with amylase.

    In my experiment, I had a certain number of moles, or a certain number of 'locks' in the solution. The substrates fitted into the active site, combines so a reaction occurs. This led to the substrate amylase, which is the key to form products that are released form the active


    Place probe into the beaker of your mixture. 11. Using a burette add drops of sodium carbonate into beaker, until pH reads 10.0pH. 12. You are now ready to record your results: 13. Immediately start recording your graph. 14.

  1. Investigating the effects of temperature on the rate of clotting milk and Rennet

    Most enzymes are proteins, and they can alter the rate of reaction without themselves being changed because they have catalytic properties. There are four key factors that affect enzyme activity and they are: 1. The concentration of the enzyme 2.

  2. The Effect of Catalase in the Breakdown of Hydrogen Peroxide

    It is critical to record the recordings according to the position of the meniscus. By squatting to eye-level, it would be more clear to see if the recordings are exactly in line with the meniscus or an inch away. This would mean that the result outcome can come out exact.

  1. Investigation On The Enzyme Trypsin

    Average Time taken for reaction Temperature (�C) Reading 1 Reading 2 Reading 3 (Nearest second) 30 365 354 361 360 40 103 105 101 103 50 90 88 89 89 60 80 78 80 79 70 69 70 71 70 Table showing the time taken for the trypsin to digest

  2. The effect of concentration on the activity of catalase.

    Measure 5cm3 of hydrogen peroxide into the syringe, which should then be connected to the flask. Inject the hydrogen peroxide into the flask and start the stop clock. Injecting hydrogen peroxide into the conical flask will immediately displace air, which must no enter the measuring cylinder.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work