• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

To investigate whether the change of length of the string is proportional to the time of a swing of a simple pendulum.

Extracts from this document...

Introduction

Physics Investigation

Aim

The aim of my experiment is to investigate whether the change of length of the string is proportional to the time of a swing of a simple pendulum.

A simple pendulum can be defined s an object which is suspended by a light, inextensible thread from a fixed point, allowing the pendulum to oscillate. The time required for one complete oscillation is known as the period of a pendulum (T). Time of a swing of a pendulum is affected by the length of the thread and the angle that the pendulum is released at.

Prediction

I predict that the increase in the length will lead to increase in the time it takes the ball to swing.

...read more.

Middle

Prepare the materials needed.Setup a pendulum as shown in the diagram.Raise the string to 90° and release it while timing.Stop the timer after 4 complete oscillations are achieved.Average and record the timing.Change the length of the rope according to guidelines below.Repeat the process 10 times.

My variable is the length of the thread. We will vary the length of the tread by 5cm. We will start with a thread 10cm long and will gradually build up: 10, 15, 20 cm and so on.

Safety

I will ensure that the practical work that I do is safe by wearing safety goggles, putting the apparatus behind a safety screen and by gently releasing the ball.

Fair Test

...read more.

Conclusion

Anomaly

There may be an odd result at 75 cm; this may be because the timing is not accurate.

Extensions

I could further my investigation by doing more different lengths to achieve more accurate results.

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Marked by a teacher

    The Simple Pendulum Experiment

    4 star(s)

    If the pendulum's string is too short then the time for an oscillation will be minute, and hard to measure. Also, 80cm is easy to measure with a metre rule. The ruler is accurate to within �0.0005m The Digital Chronometer is accurate to within �0.005s I will then set-up my experiment as shown in Fig 3 on Page 7.

  2. Period of Oscillation of a Simple Pendulum

    I believe that there is a certain angle at which the oscillation will slow down, which is probably 40�. After this point on the graph, the time slow down whereas before this they remain more-or-less constant. Conclusion I can safely say that my hypothesis regarding mass was proven to be correct.

  1. To investigate the time taken for the pendulum to oscillate for a time period.

    The pendulum will be left to oscillate 10 times before stopping the watch. This is because the reactions of the student using the stopwatch are about 0.25s for stopping and starting. So if one oscillation took 1 second the student would have around 1.5s on the stopwatch.

  2. Physics Coursework: To investigate the Oscillations of a mass on a spring

    this into the formula to give: 1 = M x 10N/Kg M = 0.1Kg Graph for the results above: On the graph above, I took the average time of 10 oscillations from 4 attempts, and this is how it looks.

  1. Squash Ball and Temperature Investigation

    10 23 As you can see from the results, there isn't a huge significant difference in the bounce back height of Balls 1 and 2 and their averages are very close in value too which also implies that there wasn't that much of a difference in their bounce back height.

  2. Investigating the amazingness of theBouncing Ball!

    When the ball hits the surface this exerts a force on these polymer chains stretching them out. The Intermolecular forces between the polymer chains then act against this force to 're-entwine' the polymer chains. So I believe that the hotter the ball the more energy supplied to the polymer chains,

  1. Investigating factors which affect the period time of a simple pendulum.

    Analysing evidence and concluding Using the results from my table, I drew a graph to show what had been obtained from the experiment (see graph A). The graph clearly shows a smooth curve with a positive gradient. This indicates that as the length of the pendulum is increased, the period will increase.

  2. Factors Affecting the Swing of a Pendulum

    The motion of the pendulum bob posed interesting problems. What was the fastest motion from a higher to a lower point, along a circular arc like a pendulum bob or along a straight line like on an inclined plane? Does the weight of the bob have an effect on the period?

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work