• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

What factors affect the bounce of a ball?

Extracts from this document...

Introduction

James Spicer, 10W2, Physics coursework, Mrs Collier

What factors affect the bounce of a ball?

Variables.

I have been asked to see what factors affect the bounce of a ball. These are the variables and how they affect the bounce:

Temperature – can increase the pressure in the ball making the molecules inside the ball

                        move faster, which doesn’t make the ball compress as much on impact.

Material – the harder the material the less compressed the ball gets on impact with the

                 floor but I hollow and holey it gains more air resistance.

Force – the more force put on the ball the more kinetic energy it gains, therefore more

             bounce due to increased pressure.

Surface area – the larger the ball the slower the ball will fall due to increased air

                        resistance (but the mass of the ball makes it go faster, it just depends).

Surface dropped onto – the softer the surface the less bounce because the surface will

                                      deform more stopping the ball from bouncing so high.

Height – the higher the ball is dropped from the more kinetic energy it will gain on the

...read more.

Middle

15.3

15.1

15.6

14.8

15.3

40

28.4

30.6

29.1

30.5

30.0

29.7

60

42.5

41.3

50.8

46.3

46.0

45.4

80

58.8

56.6

56.1

57.9

60.6

58.0

100

71.9

70.8

72.9

72.9

71.3

71.9

Seeing that these results were collected by measuring the bounce on a computer the results are not reliable because of the random selection of heights made by the computer. Also the simulation doesn’t take the force of gravity or air resistance into consideration and this makes it even more unfair. Fortunately, my results were close together so I could use them all in my average, but if any results were too far out I wouldn’t have used them to figure out the average.

Results.

...read more.

Conclusion

My graph shows that the results had a certain pattern being that they steadily increase as the height of the drop is enlarged and towards the end start to round off. The curve is most probably due to an increase in air resistance because of the increased drop height and would eventually level off more because of this. If I could of I would have done more heights, most probably up to 200cm, just so I could see if the results do level off more as the height is increased.

If given time I would have liked to investigate more of the variables, especially mass and temperature. These would have been difficult to do but would give more reliability to my results.

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Marked by a teacher

    How does the height of a ball drop affect the bounce?

    3 star(s)

    I will measure the bounce from the bottom of the ball each time, and bounce it from exactly the same height 3 times.

  2. Peer reviewed

    Investigating factors that affect the bounce height of a squash ball

    5 star(s)

    This was because, when dropped from the height of 1 m it was evident that the terminal velocity of the ball had not been reached by the time it hit the surface. I thought that increasing the highest drop height would allow me to find the height from which the

  1. Bouncing Ball Experiment

    As the height from which the ball was dropped from was increased, the GPE energy that the ball possessed before being dropped also increased. The more energy that the ball possessed before being dropped, the more energy was converted into KE while the ball fell.

  2. Squash Ball and Temperature Investigation

    I believe that the effect of doubling the temperature of the ball will produce a graph similar to the sketch below: This is because I believe that as the temperature is doubled, the bounce of the ball will more than double (shown in the graph sketch by the steep curve progressing upwards).

  1. Aim To see how the efficiency of a bouncing ball ...

    Prediction The reason I believe that if a ball is dropped at a higher height, the height of the bounce will also be higher. So there should be a direct proportional graph. This is because as you know as you increase the height of a ball; the amount of gravitational energy stored within will increase.

  2. This investigation is associated with the bounce of a squash ball. I will be ...

    The resilience of a compound is normally measured using a standard rebound test. The rebound test carried out on squash balls at present involves balls being bounced on a hard surface. The same balls are conditioned first to 23oC and then to 45oC and dropped from a height of 100

  1. My aim is to investigate how the temperature has an effect on the height ...

    This would mean that the rubber wouldn't be as good at storing elastic potential energy and converting it into kinetic energy when the ball hits the surface. The bounce height for all the temperatures will be much less than the original dropping height because energy is lost converting elastic potential energy into kinetic energy.

  2. How the height will affect the bounce of a ball

    Squash ball: I will be using a regular squash ball with a diameter of 4 cm Stop watch: I will also be timing how long it takes from the ball to hit the floor in order to have all the factors to work out the velocity of the ball.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work