• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Which Factors affects the resistance of a wire?

Extracts from this document...

Introduction

Which Factors affects the resistance of a wire?

Current is a flow of electrons and the resistance is when the electrons are pushed through the conductor they collide with the atom of the copper wire making them vibrate more vigorously.

The more resistance a resistor has, the more volts are needed to push each ampere through. If the voltage across a resistor and the current through it have been both measured, the resistance can be calculated using the equation:

Resistance = Voltage  

                     Current

                        Or

                         R = V                    

                                I

Where V is voltage (Volts) and I is current (Amps). This is Ohm’s law.

There are four factors that effect resistance:
1) 
Temperature When the temperature of a metal increases the resistance of that metal increases. This is because when the temperature increases the atoms of the metal vibrate more vigoursly because of the increase in energy. This means that the electrons have more difficulty getting through the wire as they collide with the atoms, which are in their pathway.  This increases the amount of collisions therefore there is more resistance. However it is hard to keep the temperature exactly the same as the room temperature might change from day to day. It is essential to use a low voltage because it means a low current that will not heat up the wires. If a high voltage is used the energy would be in form of heat which would make the experiment unfair. The investigation will be done at room temperature.

...read more.

Middle

30 swg

0.5

1.1

1.1

0.122

 Average resistance:

Thickness (swg)

Resistance (ohms)

22 swg

1.07

26 swg

1.03

30 swg

2.35

My second results are for different materials at a fixed length with the same thickness.

Different materials

First reading:

Metal

Current (amps)

Voltage (volts)

Resistance (ohms)

Diameter (mm)

Nichrome

0.53

1

1.89

0.546

Copper

2

1.3

0.15

0.545

Constantan

1.2

0.7

0.583

0.54

Second reading:

Metal

Current (amps)

Voltage (volts)

Resistance (ohms)

Diameter (mm)

Nichrome

0.7

1

1.43

0.546

Copper

2

1.3

0.15

0.545

Constantan

1.45

0.6

0.41

0.54

Average resistance:

Metal

Resistance (ohms)

Nichrome

1.66

Copper

0.15

Average resistance

0.49

My third results are for the material copper at a fixed length with varying thickness.

Copper

First reading:

Thickness (swg)

Current (amps)

Voltage (volts)

Resistance (ohms)

Diameter (mm)

20 swg

2

0.2

0.1

0.55

26 swg

2

0.2

0.1

0.54

32 swg

1.89

0.4

0.2

0.28

Second reading:

Thickness (swg)

Current (amps)

Voltage (volts)

Resistance (ohms)

Diameter (mm)

20 swg

2

0.2

1.04

0.55

26 swg

2

0.2

0.74

0.54

32 swg

1.85

0.5

1.8

0.28

 Average resistance:

Thickness (swg)

Resistance (ohms)

20 swg

0.1

26 swg

0.1

32 swg

0.24

...read more.

Conclusion

  • Some of the tables showed anomalies, which could have been minimised, with many more repeats and a greater range giving more reliable data.
  • More accurate measuring devices i.e. voltmeters and amp meters which would produce more accurate figures.
  • If the test were carried put in a temperature-controlled environment less anomalies would be seen.
  • We could have tried more materials to give a wider scope.
  • Instead of connecting the voltmeter to the main circuit I would connect it to the wire, which is being tested. I would do this so that the voltmeter is measuring the voltage of just the wire being tested and not the wires of the main circuit as well
  • I would use a digital voltmeter instead of an analogue meter. I would do this because a digital voltmeter is a lot more accurate than an analogue because if the needle in the analogue voltmeter is bent then the readings given off will be false whereas a digital voltmeter does not rely on a needle or any other manual movements.
  • I could have done the test for the temperature of the wire but I would not have been able to carry out a fair test because it is extremely
    difficult to produce and control the range of temperatures needed without the correct equipment.
  • To make the experiments more reliable all apparatus should have been checked to see if it is functioning properly and is giving a true reading. This would then partly avoid systematic error.

Overall the predictions I made were proved to be correct. So proving the factors that affect the resistance of a wire is:

  1. Material
  2. Length
  3. Temperature
  4. Cross section area

...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. Marked by a teacher

    Draw stress and strain graphs for the metal copper and the alloy constantan. Calculate ...

    4 star(s)

    begins this will show how much the wire extends when a force is applied to it. * Metre rule: Placed in a stationary position and as the marker moves when force is added to it I will be able to see the extension.

  2. Investigate how mass affects the diameter of an impact crater.

    Therefore, in order to conduct an accurate experiment, the height will need to be kept constant. In addition, from these findings I have decided I will use a height higher than the ones experimented. This will allow me to notify the trend of varying mass in detail.

  1. To investigate how the length (mm) and the cross-sectional (mm2) area of a wire ...

    Length 90 cm WIRE LENGTH (cm) V (v) I1 (A) I2 (A) Iaverage (A) 90.00 0.20 0.03 0.03 0.03 0.28 0.04 0.04 0.04 0.32 0.05 0.05 0.05 0.38 0.06 0.06 0.06 0.44 0.07 0.06 0.07 0.50 0.08 0.07 0.08 0.60 0.09 0.09 0.09 Table 2.2.10.

  2. Investigate one or more factors affecting the resistance of metal wires

    Even though I waited 10 seconds before I noted the current, the ammeter reading kept changing. In order to ensure that my evidence collected was precise, I repeated the experiment again - I decided that I would not use the first set of readings since these results looked out of place with the others.

  1. Finding a material's specific heat capacity

    12.3 4926 847 4080 1470 24.2 12.3 4926 847 4080 1500 24.2 12.3 4926 847 4080 1530 24.1 12.3 4926 847 4080 1560 24.0 12.3 4926 847 4080 1590 23.9 12.4 4926 968 3959 1620 23.9 12.4 4926 968 3959 1650 23.8 12.4 4926 968 3959 1680 23.7 12.4 4926

  2. What Factors affects the resistance of a wire?

    I will be keeping the voltage on the power pack the same throughout the experiment, again to keep the experiment a fair test. I shall carry out the experiment at room temperature or the particles in the wire will vibrate faster (if the temperature is increased), this will therefore have an effect on the resistance.

  1. Planning Experimental Procedures

    Below is a table of the gradients of each of the lines. Material Gradient- My Results Gradient- Secondary Results Nichrome 0.45 0.7 Constantan 0.3 0.65 Manganin 0.7 0.4 The gradient of a line tells me how steep the line is.

  2. Investigating one of the factors that affects the current in a wire.

    Temperature I predict that the temperature will have an effect on the resistance of a wire. As temperature of a metal increases the free flowing electrons gain more energy this causes them to move faster. As they move faster and have more energy a higher voltage is needed to push

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work