• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Osmosis. By this investigation, I tried to find out the changes in potato cylinders masses dependently on sucrose solution

Extracts from this document...


Osmosis in Plant Cells Name: Data: 11.11.2011 Time allocation: 2 hours I.B. Topic: 2 Data Collection and processing Quantitative data: Used solutions: 1.0 M = 20ml of 1M sucrose + 0 ml of water 0.8 M = 16ml of 1 M sucrose + 4ml of water 0.6 M = 12ml of 1 M sucrose + 8ml of water 0.4 M = 8ml of 1 M sucrose + 12ml of water 0.2 M = 4ml of 1 M sucrose + 16ml of water Potato (a) and sweet potato (b) cylinders masses changes in different concentrations of sucrose: a) Concentration of sucrose solution, M Mass of potato, g (�0.001) Mass of potato and after 30 min., g (�0.001) Change in mass, g Percentage change in mass, % 1.0 0.473 0.396 0.077 16.279 0.8 0.455 0.405 0.050 10.989 0.6 0.476 0.460 0.016 3.361 0.4 0.488 0.450 0.038 7.787 0.2 0.466 0.481 -0.015 -3.219 0.0 0.452 0.489 -0.037 -1.186 b) Concentration of sucrose solution, M Mass of sweet potato before, g (�0.001) Mass of sweet potato after 30 min., g (�0.001) Change in mass, g Percentage change in mass, % 1.0 0.455 0.450 0.005 1.099 0.8 0.441 0.442 -0.001 -0.227 0.6 0.457 0.463 -0.006 -1.313 0.4 0.482 0.486 -0.004 -0.830 0.2 0.449 0.465 -0.016 -3.563 0.0 0.435 0.456 -0.021 -4.828 Graph 1 Graph 2 Qualitative data: * Tube-pipe with 0.4 M solution wasn't fully plugged with stopper. ...read more.


The same water potential means no change in mass of potato cylinder. Any of my tested cylinders left the same as before. If we look at the trend line in the graph, we can find the most possible concentration. * The same water potential as potato: 0.3 M sucrose * The same water potential as sweet potato: 0.8 M sucrose As I've already said before, my results are very not precise. I can say that because not all points are lying on the trade line. Therefore, I may do assumption, that there are a lot of errors in this investigation. First of all, we didn't do any replications and that lowers this data's confidence and reliability. The highest deviation, as we can see from the graphs, appeared in 0.4 M sucrose solution with both types of potato. If it had happened only with one of two types of potato, I would say that it's possibly because of wrong measured mass. But now, there are mistakes in both types and therefore I think that the problem was in solution. I think that I put too little water or too much sucrose while making 0.4 M solution, thus water potential in it got lower and caused lower osmosis to potato. Therefore, mass after got lower than it should be and percentage difference in mass increased. ...read more.


Therefore it's not always objective to compare results with literature or other's value. In this particular investigation, potato may were grown under the different circumstances, had different concentration of sucrose inside and different water potential. I've mentioned quite a lot of errors, both systematic and random. That shows that this investigation wasn't perfect and it can be improved a lot. First of all, as all investigations, this one requires a lot of attentiveness. On purpose to achieve better results, all the steps should be done very carefully, precisely. Especially, making solutions and measuring all masses. For being more precise in making solutions, it's better to use the same size tube-pipes because now it was really hard to be sure that all the solutions are made right because volumes looked different. Moreover, it is very important to be sure about measuring right initial and final masses. I'm pretty sure that initial masses were measured correctly, unless there appeared random errors as just recording wrong digits. On the other hand, I think that there were errors in recording final mass. To eliminate these errors, it's very important to make sure that while measuring final mass, there's no additional water on potato cylinders, which could change final results (by decreasing percentage change in mass). Finally, as I have already mentioned before, almost all errors can be eliminated by just increasing level of meticulous in every step of investigation. ?? ?? ?? ?? Investigation: Osmosis in potato cells, IB Biology 1 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Biology section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Biology essays

  1. Marked by a teacher


    3 star(s)

    membrane from a place of higher concentration to a place to lower concentration, to balance out the water concentration in both the potato and the water solution. As the sugar concentration increases, it is clear that less water concentration is present in the solution, hence the potato starts to gain less mass.

  2. The effect of concentration of sucrose solution on the osmosis in potato

    * size of potato Use a cork borer to make the potato in to the shape of cylinder and use a scalpel to cut the cylinder into 2cm lengths. * size of container Use same shape and size of test tube to place the potato cylinder with different concentration of sucrose solutions.

  1. Testing the solute concentration of potato cells

    Diffusion and osmosis are the natural phenomenon in which molecules wants to be spread evenly throughout the space and reach the state of equilibrium (Diffusion and Osmosis, n.d.). Therefore, more water molecules want to flow to the high solute concentration with low amount of water molecules to reach an equilibrium of evenly-spread water and solute molecules.

  2. Osmosis Experiment. This experiment is to consider how salinity influences osmosis in potato cells.

    Thus, if a test tube holds 25ml, 15ml would be an appropriate volume for this experiment. The time the potato cubes are in the test tubes There should be 20 hours from the start until the end of the experiment for all the investigations.

  1. investigating the water potential of potato cells

    amount separately; making sure that the balance is carefully zeroed before each weighing. 7) Record your raw data. You will need to process and graph the data. Use the processed data to estimate the water potential of the potato tissue in MPa.

  2. The effect on osmosis on the egg shell

    This action repeat for each of egg. Be careful to not mix up eggs. 15. Results write down. 16. Process the obtained data accordingly to the formulas and term presented in PROCESSING OF THE DATA RESULTS Table 1.

  1. Osmosis Investigation - effect of different strength of glucose solution on potato and apple ...

    4.50 4.50 4.50 4.50 0.00 4.90 4.80 4.80 4.83 0.06 C 0.4 4.50 4.50 4.50 4.50 0.00 4.70 4.90 4.80 4.80 0.10 D 0.5 4.50 4.50 4.50 4.50 0.00 4.60 5.00 4.60 4.73 0.23 E 1.0 4.50 4.50 4.50 4.50 0.00 4.20 4.30 4.40 4.30 0.10 Table 1.2: Table shows

  2. Investigation of osmosis in potato strips by measuring the length of the strips after ...

    table: The table below shows the Quantitative raw data : Table 1: the table below shows the length of the potato strips after the incubation in various sucrose concentrations for a time of 30 minutes (±0.01 minute). Original length of the potato strips before the incubation is 4.0 cm.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work