• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

The purpose of this experiment was to determine the molar mass of carbon dioxide (CO2) experimentally.

Extracts from this document...

Introduction

Determining the molar mass of a gas Experiment date: 13/10/10 Performed by: Hannah Chan & Alexander Forman The purpose of this experiment was to determine the molar mass of carbon dioxide (CO2) experimentally. A simple calculation using the periodic table would provide the correct answer for the molar mass of carbon dioxide, however, one can also conduct an experiment and try to reach the accepted value. Introduction: The ideal gas law equation(PV = nRT) defines the relationships between pressure (P), volume (V), number of moles (n), and temperature (T) for any ideal gas sample. R is the ideal gas constant, defines as 0.0821 L � atm/K � mol. Therefore P must be expressed in atmospheres (atm), V in liters (L), n in moles (mol), and T in Kelvin (K). Almost all experimental conditions correspond with the ideal gas law equation. Only when the gas pressure is several atmospheres or higher does the behaviour deviate from the equation. In order to calculate the molar mass of CO2, one must first be familiar with this equation. Hypothesis: It was expected that the mass would be approximately 44 g mol-1. Materials: * Volumetric flask, 100cm3, dry with stopper * Scale with accuracy of three decimal places. ...read more.

Middle

filled with water 157.2 g � 0.1 Room temperature 21 �C � 0.5 �C Atmospheric pressure 750 mmHg Density of air under conditions of experiment 0.00199 g cm-3 Table 17a 15 �C 17 �C 19 �C 21 �C 23 �C 25 �C 740 mmHg 0.00119 0.00119 0.00118 0.00117 0.00116 0.00115 750 mmHg 0.00121 0.00120 0.00119 0.00119 0.00118 0.00117 760 mmHg 0.00123 0.00122 0.00121 0.00120 0.00119 0.00119 770 mmHg 0.00124 0.00123 0.00123 0.00122 0.00121 0.00120 780 mmHg 0.00126 0.00125 0.00124 0.00123 0.00122 0.00122 Table 17b (Density of air (g cm-3) at different temperatures and pressures) Analysis: Before the Ideal gas equation was used to calculate the molar mass of CO2, some calculations were done. 1) Calculating the volume of the flask. From table 17a the mass of the flask with both air and water was read. The mass of the flask with air was subtracted from the mass of the flask with water, leaving only the mass of the water. Knowing the density of water (1 g cm-3), the volume of the flask was deduced. (Mass of flask + Water ) - Mass of flask = mass of water = volume of flask. 157.222 g - 48.303 g = 108.919 g = 108.919 cm3 2) ...read more.

Conclusion

Density = mass/volume. d = 0.18661 g/108.919 cm3 � 10-3 = 1.71329 g m-3 3) In step (4) why were you told to remove the delivery tube slowly? It was to prevent the carbon dioxide escaping from the flask. 4) Why was a less accurate balance adequate for weighing the flask full of water? It was more adequate because the mass of water is much larger than both CO2 and air, increasing the uncertainty and removing the need for a large number of decimal places. Errors & improvements: The molecular mass of carbon dioxide is known to be approximately 44 g mol-1, however, in this experiment the molar mass of CO2 turned out to be only 41.9 g. There are several reasons for this error. The most likely being the concentration of CO2 in the flask. Some of the carbon dioxide would escape before the stopper has sealed the flask. The CO2 from the generator might have not been completely pure. Another reason might have been a systematic error caused by the scale leading to incorrect values, or simply an uncertainty error by rounding too much. Conclusion: The relationship between the actual amount (44 g mol-1) and the calculated amount (41.9 g mol-1) was significant. The procedure of the experiment would not be functional in finding an unknown gas. ?? ?? ?? ?? Alexander Forman 2IB 06/10/2010 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays

  1. A comparison of various proprieary antacids

    In addition, there is presence of enzymes too. The temperature of the stomach is also greater than the room temperature in which this laboratory practical was carried out. All these factors, with the addition of mechanical digestion, can increase the effectiveness of one antacid over the other.

  2. Free essay

    Energy content Cal/g

    Every single percent error calculation was at least, if not more, greater than -99 % which only screams that there definitely exists paths for improving this lab. One major source of error was the way in which the heat was allowed to reach the calorimeter.

  1. im To determine the relative molecular mass of chloroacetic acid ClCH2COOH

    Since the reaction between chloroacetic acid and sodium hydroxide is a one to one reaction, a greater number of moles of sodium hydroxide means a greater number of moles of chloroacetic acid. The relative molecular mass was found by dividing the mass of chlorocetic acid reacted over the number of moles of chloroacetic acid reacted.

  2. Can one determine the coefficients of a balanced chemical equation by having the mass ...

    While the reaction is taking place record any quantitative data in "Data Table 1 - Qualitative Data Table" and record it under "During Reaction". This allows one to sufficiently make a conclusion, based on what is occurring in the reaction.

  1. The aim of our experiment was to find out the molar mass of the ...

    Temperature C = Concentration Mr = molar mass M = mass V = Volume N = Moles Volumetric flask = 250 ml �0.3 0.12% Pipette = 20.0 mL ??0.1?mL 0.5% N = P=100.6 V= 40.0 ml or 0.040 L R= 8.31 T= 295 K 0.00994% 1.25% 0.00% 2.27% N =

  2. To determine the molecular mass of an unknown alkali metal carbonate, X2CO3.

    of substance Z and finally, 3 times with 2.5g of substance Z. 15. All nine readings were recorded in the pre-made data tables. Safety Precautions: 1. Throughout the experiment, a lab coat was worn so that any spills do not cause damage to clothes or body.

  1. To determine the standard enthalpy of formation of Magnesium Oxide using Hess Law.

    is still 16.1% off. The experiment was carried out with the maximum possible care to avoid any errors however, there still were several limitations in the apparatus and several assumptions made that have led to the this high degree of inaccuracy.

  2. The aim of this experiment is to examine the enthalpy of combustion of the ...

    bonds are broken more energy will be released during the combustion process since more carbon- oxygen bonds ( within carbon-oxides ) are being made. The molecular length becomes longer in the bigger molecules increasing the surface area hence allowing more energy to be released.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work