• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Bionomial Investigation

Extracts from this document...


Tran Quoc Hoang Viet

Math HL

EF International Academy 2009

Math Portfolio

  • Pascal Triangle is one of the most intersting way to place number in a logical pattern.This is done through very simple steps. Firstly, we start with the number 1 placed at the top.We then write down the following number on the lone below it,trying to form an imaginary triangle form. Each muber is calculated from the addition of the two numbers above it. The exceptions are the number “1” which are near the edge.
  • In this portfolio, I am going to find out and prove various formula and sums that are interconnected with each other through a common element: The Pascal Triangle. For certain time, I will have to prove certain symmetrical property, to find the sums, to work out the general formula and prove it is true, taking true examples of it. Explicating some of the formula connecting with the Pascal Triangle would be what I am about to do for most of my portfolio

The Pascal Triangle

                                                                                               1                                                                                                  Row 1

                                                                                        1           1                                                                                           Row 1

                                                                                1             2            1                                                                                   Row 2

                                                                         1                  3             3            1                                                                            Row 3

                                  1         4            6             4           1                                                                      Row 4        

                                   1           5            10         10           5             1                                     Row 5

                                                 1             6           15           20         15            6             1                                    Row 6

                                           1             7           21          35          35           21           7             1                            Row 7

                                    1          8             28         56           70          56           28           8             1                            Row 8

                            1            9            36          84         126         126          84          36            9             1                    Row 9

                     1           10          45          120       210         252         210         120        45          10            1                   Row 10

             1           11          55          165        330        462            462           330         165           55          11        1             Row 11

      1          12            66        220          495       792          924          792          495      220         66            12       1          Row 12

1          13         78          286        715       1287      1716       1716        1287        715          286        78          13       1 Row13

The binomial coefficients in the expansion of image00.pngimage00.png are defined as


We have the equation of image12.pngimage12.png=image71.pngimage71.pngwhich is further derived from the above Triangle. I am now going to prove that this formula really work as true formula. Having prove this formula, will be able to get the subsequent number for a certain row

...read more.



         A fraction within a fraction, the nominator can be moved to the upper nominator

          = image90.pngimage90.png + image89.pngimage89.png

(n-r+1)!Canbe further simplified through these steps:(n-r+1)! = (n-r+1)(n-r)!

                                                                                                                 (n-r)! = image91.pngimage91.png

          = image90.pngimage90.png + image92.pngimage92.png

A fraction within a fraction, the nominator can be moved to the upper nominator        

          = image90.pngimage90.png + image93.pngimage93.png

         Both fraction has the same denominator, they can join each other

          =  image94.pngimage94.png

          =  image95.pngimage95.png

          = image96.pngimage96.png

          = image97.pngimage97.png(as in the required form)

     Hence we can conclude thatimage98.pngimage98.png

Again, a general formula for the second sum, letter b, can be produced from the sum.That general formula isimage16.pngimage16.png + 2image16.pngimage16.png+image18.pngimage18.png. I am now going to use the proved formula and algebra rules to prove that the formula is the true formula for it.

 I split 2image20.pngimage20.png into 2 singles: image17.pngimage17.png

 = image02.pngimage02.png + image03.pngimage03.png +  image03.pngimage03.png + image04.pngimage04.png

Using the proved formula, image05.pngimage05.png+image06.pngimage06.png=image07.pngimage07.png

  = image08.pngimage08.png + image09.pngimage09.png

Using the proved formula, image10.pngimage10.png+image12.pngimage12.png=image13.pngimage13.png

  = image14.pngimage14.png

...read more.


image56.pngimage56.png. Thus, I am able to conduce to another general formula from the sums that I was given to do. These are the three formulas:

image10.pngimage10.png+image67.pngimage67.png + image68.pngimage68.png+image18.pngimage18.pngimage69.pngimage69.png + 3image16.pngimage16.png + 3image17.pngimage17.png +image18.pngimage18.png

and the sums:


Once I got my hands on the answer for the sums, I then proceeded onto find the formula which connect any (k +1) successive coefficients in the nth row of the Pascal Triangle with the coefficient in the (n+k)th row. Should I am able to find it; I then, with the use of algebraic rule and mathematical induction, prove the formula is true. Besides using the general elements, I directly test the formulas through real number examples. Here are the two formulas that I managed to get:


Consequently, I have to use real number sums to test these out. These are the sums that I did:


The Pascal Triangle is one in a million mathematical wonders that human can ever think of. It connects all common senses of logic and algebra rules. From it, various general formulas can be derived from, making more mathematical properties at the same make them easier to understand. More formulas means that there will be less work of calculations required, making the job of a mathematician easier.  Although it is not just Blaise Pascal that got to think of such triangle, in the years of the 13th century, an arithmetic triangle which looks and works exactly in the same way as the Western Pascal triangle was produced by a Chinese mathematician .The only slight difference is that it was expressed through Chinese figures.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Extended Essay- Math

    �'�o|�SBa% ���:��p/...��6w8 "ͱ|�bx�:Ö:�+...�(tm)�#...�'��=1�~���9�1/2q�"�- $@3���#��{z�'X��å� ?"� �hMaI&�;�; {�(tm)4T�Ppz�" � ��hM��?����ƶh�� �l�jR�� "ÄH �t����]8...�X�f7�#����=U�v�TA@G'b��c��O�]�gg�+U<���h���:�'�Mb���� �v�T@@G'��-�M3qWH�P'QL"H �ÝO���;a%...�"M�h0� ����$��-^ßP��ÍC�Dms�ߤ�)bI@t$)>���t�4e�'g0�'ß²@$01/2ħ����#-K�o�C=�Hm�N���$@2�)0�hS�)�"SiV0#ì����$�@3��� 0�O��v���×�V孹�-�ѳ/�"��' ��-�*(r)�F�>Ò?{���"O ��% �k��<3mo� �IDAT��J �5�'� �ZsIF1/4�H@_k�\6��f�����{� ��% �KRd�v�Qx"��� �C�'�x ��3/4v���'uH&&M<Bu��UH>�ÇTG@_k�xm'I�I==�'v��߬�9c�I ��p ���q�2�-(X"��Cg�$ :�ZSXc!w�iy'|�-(r)-ß²@$0}�)r&�i�C�iÌ"��n:4�'� �KRl1�&���1/40�h>� _$@3�-�x#j�Q[`0�`�[ã�-�3�$@ /=�:�)Y�1�''j�p\j ��9 �$}I��58%����^9\�[H��# ��G�X(p�尤0�i"Þ5�%}�ӡa= ��L@_'l0l�Ï�6�x[{��4/_���#� LA@_"Èm��" �(tm)��e-��'��* ���}`�B&j[e � ' Ò!���%�@X$������a�@�~-XV<{�s 0�"( "5E�(r)��...�sFB�"���7_,�" ��t')\1/2��6}�?$H)�f��* ���}�ݵrvR� �/�z�x^�D�HSÐ�0��`�Z�� �"f�����B:9�' \ "Ý�ì±ï¿½F�]���x�q�`��$

  2. Math Investigation - Properties of Quartics

    quadratic function from cubic: 3 1 -7 11 3 3 -12 -3 1 -4 -1 0 The quadratic is 2 - 4 - 1 = 0 Using the quadratic formula we can now find out the remaining two roots of the quartic.

  1. Mathematics (EE): Alhazen's Problem

    two equations: Using positive square root: Using negative square root: Looking at these equations, it becomes evident that we could find possible solutions using a simple graphing calculator such as the TI-84. The zeros of the functions should give us the x-values of the solution.

  2. Math Portfolio: trigonometry investigation (circle trig)

    Likewise, when the value of x is divided by the value of r, a negative number is divided by a positive number resulting to a negative number. The value of y and the value of x equal to a negative number respectively in quadrant 3.

  1. Function Transformation Investigation

    is perpendicular to the x axis (input). Negating the input values creates a similar transformation, but horizontally, because the input values are done along the x axis. Inversing the input or output of a function is also something to be considered: Graph of And Graph of: And The transformations that appears on these functions are a bit more complex, but easily understandable.

  2. Stellar Numbers. After establishing the general formula for the triangular numbers, stellar (star) shapes ...

    + c 1 = 1a + 1b + c 1 = a + b + c When n = 2, Sn = 13 13 = a(2)2 + b(2) + c 13 = 4a + 2b + c When n = 3, Sn = 6 37 = a(3)2 + b(3)

  1. The purpose of this investigation is to explore the various properties and concepts of ...

    The 26 letters of the alphabetic are to be allocated corresponding digits. To complicate the system, the first half of the alphabetic are to be allocated even numbers, while the rest of the alphabet was allocated odd numbers. Next, the message of choice, ?IONCANNONREADY? is to be translated to a numeric code using the alphanumeric system.

  2. Lacsap triangle investigation.

    ? 3a = b Using the 4th row with the numerator 10, we substitute the value of ?b? into this second equation 10 = a (4)2+(2-3a)(4)+0 10 = 16a + (8 ? 12a) 10 = 4a + 8 10 ? 8 = 4a 2 = 4a 1 = a 2

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work