• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Infinite Surds investigation with teacher's comments.

Extracts from this document...

Introduction

15th February, 2012

Portfolio Task 1

Type I – Infinite Surds

* Add headings

* Name figures and refer to them where necessary

In this portfolio, I will find the general statement that represents all the values of k for which the exact value of the infinite surd

k+k+k+k+k+…

 is an integer.  To do so, I will first investigate several different expressions of infinite surds in square root form and find the exact values of these surds.

A surd is the root of non-perfect powers.  It is an irrational number which exact value can only be expressed using the radical or root symbol is called a surd.  For instance, 2 is a surd because the square root of 2 is irrational.  An infinite surd is a never ending irrational number.  Its exact value could be left in square root form.

The term “surd” traces back to Al-Khwarizmi, an Arabic mathematician during the Islamic empire in or around 825AD who referred to rational and irrational numbers as “audible” and “inaudible” respectively.  Later, the Arabic “asamm” for irrational number was translated as “surdus” (meaning deaf or mute in Latin) by Gherardo of Cremona, a European mathematician in 1150.  Fibonacci (1202)

...read more.

Middle

 increases at a decreasing extent.  That is, each time it increases less than before.  The scatter plot seems to have a horizontal asymptote at y=1.618.  The value of an approaches approximately 1.618 (i.e. an≈1.618) but never reach it.

In other words, as n gets larger, the difference with the successive term (also shown in the figures in the “an+1 - an” column of the table) is gradually decreasing and almost reaches 0.

What does this suggest about the value of an- an+1 as n gets very large?

The above observation suggests that as n gets very large and at a certain large enough point, an will cease to increase and remain stable at a value.  The graph will then follow a straight horizontal line.

In other words, as n approaches infinity, the value of an- an+1 approaches 0.  To express in numerical notations, as n→∞, an=an+1.

Use your results to find the exact value for this infinite surd.

The above analysis so far only shows that an≈1.618.  To find the exact infinite value for this sequence, we need to rearrange the recursive formula an+1=1+an.

As mentioned, as n→∞, an=an+1.  The recursive formula becomes an=1+an.

(Alternatively, as n→∞

...read more.

Conclusion

When k = 6, …

When k = 12, …

When k = 20, …

When k = 30, …

Find the general statement that represents all the values of k for which the expression is an integer.

Explain how you arrived at your general statement.

The general statement that represents all the values of k would be:

For the expression 1+1+4k2 to be an integer, there are two conditions.

(1) 1 + 4k must be a perfect square.  This means that 1 + 4k is must be an integer larger or equal to 0, and its square root is a positive integer or 0.

(2) 1+1+4k must be an even number so that after it is further divided by 2, the final result would be an integer.

Test the validity of your general statement using other values of k.

To prove my general statement is valid, we consider 3 cases.

When both Conditions (1) and (2) are not met

k = 3

When only Condition (1) is met,

k = 3.75

(Note: There is no case where only Condition (2) is met because if 1 + 4k is not a perfect square, 1+1+4k would not be an integer.)

When both Conditions (1) and (2) are met

k = 20

Discuss the scope and / or limitations of your general statement.

Limitations: Meet above 2 conditions

* Further elaboration

1+4k has to be odd integer.

1 + 4k has to be square of odd integer.

k = n2 – n

Where n  Z+, n>/= 2

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. The Fibonacci numbers and the golden ratio

    By changing the start numbers I proved that it doesn't make a difference which numbers we use. To prove my conjecture I've changed the equation and solved it. Afterwards I found the discriminant (5), which leads me to find the roots.

  2. Infinite Surds

    infinite surd where the first term is , find an expression for the exact value of this general infinite surd in terms of k. ANSWER: The formula in terms of k � = The value of an infinite surd is not always an integer.

  1. Infinite Surds. The aim of this folio is to explore the nature of ...

    Finally, the value for where the value of the infinite surd is equal to 4 can be worked out in order to see if there is a clear pattern. The results are tabulated to see if there is a correlation between the value for and the integer value of the surd.

  2. Math Portfolio: trigonometry investigation (circle trig)

    r, a positive number is divided by a positive number resulting to a positive number. The value of y and the value of x equal to positive numbers respectively in quadrant 1. When the value of y is divided by the value of x, a positive number is divided by a positive number resulting to a positive number.

  1. Mathematics (EE): Alhazen's Problem

    Initial approach: Now in order for us to have a rough idea of the range of possible solutions, we must consider several general cases and see what results we get. Consider Figure 4, here I have randomly chosen two points to be my locations for ball A and ball B.

  2. This essay will examine theoretical and experimental probability in relation to the Korean card ...

    x P(player 2 getting any cards excluding January with?) x P(player 1 getting January with?) x P(player 2 getting any card) = (2/20) x (18/19) x (1/18) x (17/17) = 1/190 P(all) = P(a) + 2P(b) = 1/95+ 1/190 = 0.0157894737 Ddaeng Ddaeng is when a player gets any same months, October is highest and January is lowest.

  1. Math Portfolio type 1 infinite surd

    Evaluation: As the graph shown, as the n gets very large, the values of an still be the same. Hence the value of is equal to 0. According to the data table, after the 4th term, all the data have the same until 1.61 which is 2 decimal place.

  2. Infinite surds portfolio - As you can see in the first 10 terms of ...

    So as n gets larger, an- an+1 gets closer to 0. Since the sequence goes on forever, it cannot be determined if an- an+1 ever equals 0. From previous results, you know that as n, an gets flatter and levels out right under about 1.61803.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work