• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Centripetal Motion

Extracts from this document...

Introduction

Physics HL- Mr. Kalsi                         12/15/2008             Stephanie Gina Chan 12BJ

PH07 Centripetal Motion

Aim:

The aim of this investigation is to determine the relationship between the Hanging Mass and the time for a revolution, when an object is at uniform circular motion. Hence, to find the relationship between T2 and 1/mh

Raw Data Table:

Mh (g)ΔMh=±0.01m

Time for 10 revolutions(s)

ΔT=±0.01s

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

51.07

7.34

7.46

7.41

7.48

7.43

61.45

7.00

7.00

7.12

6.83

6.87

71.79

6.50

6.45

6.70

6.37

6.63

82.31

5.99

6.22

5.98

5.95

6.01

92.93

5.63

5.74

5.77

5.52

5.63

103.65

5.50

5.60

5.58

5.51

5.45

114.68

5.19

5.48

5.25

5.12

5.18

The relationship between T2 and image00.pngimage00.pngcan be demonstrated by the equation:

image07.png

Let image11.pngimage11.png be the time for one revolution squared (s), g be acceleration due to gravity (ms-1), l be distance between centre of circle (cm), image21.pngimage21.png

...read more.

Middle

. For example, image03.pngimage03.png=0.551s

Then we have to find Tavg2 and to do that we find Tavg first, and the average is divided by 50 because the time is in 10 revolutions and I need find Tavg for 1 revolution:

Tavg= image04.pngimage04.png, for example, image05.pngimage05.png=0.742s, then

Tavg2= image06.pngimage06.png, for example, image08.pngimage08.png2=0.551 s2.

Then lastly to calculate ΔT2:

ΔT2= (Timage09.pngimage09.png2

= (Timage09.pngimage09.png (Timage09.pngimage09.png

= T2image10.pngimage10.pngxTavg2

...read more.

Conclusion

hg, hence T= mhg-f. Then we derive the equation with friction taken into account:

Fc = TsinΘ= (mhg-F) sinΘ

Fc = image22.pngimage22.png

(mhg-F) sinΘ= image23.pngimage23.png

(mhg-F) sinΘ=image24.pngimage24.png

(mhg-F) sinΘ= image25.pngimage25.png

T2= image26.pngimage26.png

        As we can see all other variables remain constant except that the denominator is changed with the subtraction of F, and that causes the experimental value to increase, which proves that there is error because the slope of experimental value is greater than the slope of theoretical value.

        Secondly the mass of the string will affect the experiment because it adds on more mass to the system.

Improvements:  

For friction that occurs between string and tube we should add some lubricants and for the mass of the string that effects the system we should use a thinner and lighter string to minimize the error.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Physics essays

  1. In this extended essay, I will be investigating projectile motion via studying the movement ...

    Also, during the release of metal ball, some elastic potential energy is lost due to work done against air resistance as the metal ball has traveled a certain distance in this process. The container may not be clamped tight enough to prevent movement during the launching of the metal ball, suggesting that there was recoil during the process.

  2. Analyzing Uniform Circular Motion

    Data table #2: Manipulating Spinning mass (ms) Spinning Mass (�0.01) g Time Period for 10 cycles(�0.01s) Period for 1 cycle (�0.001s) 13.63 4.35 0.435 4.75 0.475 20.25 5.53 0.553 5.31 0.531 27.78 6.21 0.621 6.14 0.614 33.65 6.54 0.654 6.73 0.673 39.92 7.05 0.705 6.93 0.693 Spinning Mass (�0.00001)

  1. Suspension Bridges. this extended essay is an investigation to study the variation in tension ...

    highest at a point of application of force which is before the halfway distance between the rigid supports. From the maximum point onwards, the tension keeps on reducing and the minimum point lies when the point of application of force is the furthest from the first rigid support Comparing the

  2. Physics IA -motion

    and finding uncertainties: To find the uncertainty of a measurement one must simply find the limit of reading for the instrument being used and half it. The limit of reading is equal to the smallest graduation of the scale of an instrument.

  1. IBPhysics - Circular Motion Lab -MedepalliD

    Practice swinging the stopper with one hand holding the tube 8. When you have got the hang of it, take your first cm and make sure it is a the rim of the tube 9. Begin timing and count to 20 revolutions and stop 10.

  2. Pendulum work out the value of acceleration due to gravity (g), by using ...

    * String- A string of negligible mass is taken which is about 150 to 250 cm long. This forms the main part of the pendulum * Mass bob- A mass bob of unknown weight is taken. One precaution of taking the mass bob is that it must have a small hook so that the string can be attached to it.

  1. Horizontal Circular Motion Lab

    In reality, the clip can only come infinitely close to the glass tube for the experiment to work (because they cannot touch), and because the motion of the swing is controlled manually, it?s almost certain that every radius during the course of the lab in each trial will vary, which can have significant impact on the result.

  2. HL Physics Revision Notes

    9.4: Orbital Motion: Gravitation provides the centripetal force for circular orbital motion. Derive Keplar?s 3rd law GMm/r2=mv2/r Gm/r2=v2/r (where v =2(pi)r/T) R3/T2 Derive expressions for the kinetic energy, potential energy and total energy of an orbiting satellite PE = -GMm/r KE = .5GMm/r Total energy = KE+PE = -.5Gm/r

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work