• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

ANIMAL COGNITION CRITICAL REVIEW

Free essay example:

A critical review on:

Rescorla, R. A. (1988). Pavlovian Conditioning. It’s Not What You Think It Is. American Psychologist, 43(3), 151-160.

In current textbooks that describe how Pavlovian Conditioning works, authors frequently wrote that there are two stimuli in operation – the conditioned stimulus (CS), which is neutral (i.e. elicits no response) and the biologically significant, unconditioned stimulus (US), which is valuable (i.e. elicits an unconditioned response UR). After repeatedly pairing CS and US, previous neutral CS would elicit a conditioned response (CR) which would resemble the UR (Klatsky, 1980; Atkinson, Atkinson, Smith & Hilgard, 1987). Rescorla (1988) argued that wrong information had been written in the textbooks and they have also ignored the dramatic conceptual changes that took place within Pavlovian Conditioning. Rescorla (1988) has also mentioned in his article what the important circumstances for producing Pavlovian Conditioning are, what is learned during conditioning and how conditioning may influence our behaviour. Therefore, this critical review would summarize some of the main claims he has made in the article and provide evidence for and against his claims.

        Firstly, Rescorla (1988) proposed that in order to produce appropriate circumstances for Pavlovian Conditioning to occur, the contiguity of two events (occurring together), in this case the conditioned stimulus (CS) and the unconditioned, biologically significant stimulus (US), is neither necessary nor sufficient for conditioning to occur and for forming an association between CS and US. The failure to arrange contiguity would also not preclude associative learning (Rescorla, 1988). Rather, it should be the information one stimulus (the CS) gives about another (the US), known as the learning of relations or contingency of events, that should be important. The contingency of events (CS and US) can be calculated by the probability of US occurring in the presence of CS minus the probability of US occurring in the absence of CS. It can also be expressed as P(US|CS) – P(US|~CS).

Rescorla (1988) quoted experiments showing that amount of conditioning may be sensitive to the base rate occurrence of US against a CS/US contiguity taking place – P(US|~CS), in which he concluded that contiguity is not a sufficient circumstance for producing conditioning. From Rescorla (1968), asymptotic levels of fear conditioning, measured by the ability of the CS to interfere with the organisms’ ongoing behaviour, can be plotted against P(US|CS) and P(US|~CS). Results revealed that conditioning increased with P(US|CS). However, conditioning was an inverse function of P(US|~CS) while keeping CS/US contiguity constant. By simply increasing the base rate of the US shock, conditioning attenuated from excellent to negligible. Therefore, Rescorla (1988) concluded that conditioning depends not on contiguity between CS and the US, but rather the information CS provides about the US as this captures the relation needed to produce an association between two events.

Rescorla’s (1988) claim was not unchallenged. Some modern theories of associative learning other than Rescorla’s explained effects of CS-US contingency in terms of temporal contiguity (Wasserman, 1989; Gibbon and Balsam, 1981; Jenkins, Barnes and Barrera, 1981). They suggested that a positive CS-US contingency can be said to arrange CSs and USs in a way that the CS signals a shorter time to the US than the average time between USs or the average time between other intermittent stimuli and the US. On the another hand, a negative CS-US contingency can be said to arrange CSs and USs where it takes longer for the CS to signal the US compared with the average time between USs or the average time between other intermittent stimuli and the US. Finally, a zero contingency means to arrange CS s and USs in such a way that the CS signals the same time to the US as the average time between USs or the average time between other intermittent stimuli and the US. Therefore, from the above descriptions, contingency can be expressed in terms of different temporal contiguities which would present a challenge to Rescorla’s (1988) claim that contingency instead of contiguity is the necessary and sufficient circumstance for producing learning, and contingency is perhaps a redundant term this case where contiguity seems sufficient.

Moreover, the idea of contingency being a necessary and sufficient circumstance for conditioning by Rescorla (1988) was directly contradicted by results of subsequent experiments (Papini and Bitterman, 1990). In one experiment by Brandon (1981), a single group of pigeons was trained with three colours following each other in a haphazard (random) order. In the presence of colour A, free food was on average given twice per minute. In colour B, once per minute; finally, in colour C, no food was given. Though in all conditions, the probability of reinforcement was exactly the same in its presence as in its absence (i.e. zero contingency), pigeons responded differentially to colour B which was less than to A and more than to C. Therefore, conditioning can be elicited with the absence of contingency. Similar results have been obtained using goldfish, with both food and shock as reinforcers (Brandon, Stake and Bitterman, 1982). Therefore, it is questionable whether contingency is really a necessary circumstance to produce learning.        

        In Rescorla (1988), he mentioned experiments showing that contiguity is not necessary for Pavlovian associations. Consider an experiment by Rescorla (1968) where instead of omitting all shocks in absence of the tone, all shocks were omitted in the presence of the tone, which ensured that all CS/US contiguities were taken away while a high base rate of US occurrence is maintained – a high P(US|~CS). Results showed that organisms still managed to learn that the tone and the US were negatively related, where the tone became a conditioned inhibitor. In addition, Rescorla (1988) also found out that part-whole relation may play an elicitive role in Pavlovian conditioning, which refers to the phenomenon that partial information about an object may serve a signal of the entire object, which impacts the formation of an association between stimuli. Whether part-whole relation really plays an elicitive role in Pavlovian conditioning yields reliable and valid results still demands further investigation.

In strong contrast to Rescorla’s (1988) propositions, a study by Bangasser et al. (2006) suggested that stimulus contiguity is in fact necessary for conditioning to occur. They used a trace conditioning paradigm, where presentations of the CS and the US were separated in time by an interstimulus interval. In their study, even if intact animals (i.e. rats being studied without hippocampal lesions), they could still associate discontiguous stimuli – stimuli that were not paired together, contiguity was still necessary for trace fear conditioning, where the hippocampus has evolved the special role of compensating for discontiguity. Rats used in Bangasser et al. (2006) with hippocampal lesions were able to learn the predictive relationship between stimuli, but only after contiguity was restored. In particular, they designed a ‘contiguous trace conditioning’ paradigm where CS-US contiguity was restored by representing the CS with the US simultaneously. Though rats with excititoxic (involving an agent binding to a nerve cell receptor to either stimulate or damage it) lesions of hippocampus could not learn a standard trace fear-conditioning paradigm, lesioned rats trained on CTC had showed significant conditioning. Here, hippocampus seemed to have played a role in compensating discontiguity. Results were in contrast to the view that predictive relationship per se (i.e. the informational, contingency view) leads to association formation.

Moreover, the proposition that contingency evaluation may have played a key role in conditioning does not rule out the role of contiguity (Arvanitogiannis, 1997). If animals are to calculate contingency of events, which is to compute the frequency of reinforcement in the presence and the absence of a CS in order to develop a conditioned response, it seems difficult for the animal to carry out the computation unless it has first established associations upon which to base its determination of contingency, where contiguity may have played a role. One alternative theory of circumstances sufficient for conditioning was suggested by Staddon and Zhang (1991) that both pairing and contingency play a role in conditioning, which seems to have captured nicely the sophistication underlying contemporary theories of conditioning. Another idea was prompted by Gibbon et al. (1977), whom produced evidence demonstrating that conditioning depended on the ratio of the interstimulus interval (ISI) to the intertribal interval (ITI). The idea for Gibbon et al. (1977) should have been considered in Rescorla (1988) as a possible circumstance for producing conditioning, which may give a more comprehensive account for circumstances producing conditioning.

        Rescorla (1988) once expressed disagreement over the commonly held belief about Pavlovian Conditioning in that it is a slow process where organisms would learn only if stimulus relations are laboriously repeated. He then suggested that modern data did not support the belief and went on saying that one-trial learning is not confined to flavor-aversion learning and learning in five or six trials is common. Unfortunately, Rescorla (1988) had not included studies that supported his counter arguments, therefore whether Pavlovian Conditioning is a slow process remains questionable. One good example may be the aplysia californica, which could demonstrate siphon and gill withdrawal quite rapidly (Hawkins et al., 1983). Perhaps, the speed where organisms can be conditioned may depend on factors like the preexperimental relation between the CS and US, circumstances of stimulus selection and CS-US contingency (Spear and Rudy, 1990).

        Concerning the content learned by organisms during Pavlovian Conditioning, in opposition to traditional claims, Rescorla (1988) suggested that organisms will be able to learn an array of associations, not just the relation between CS and US. This idea was supported by subsequent research (Blaisdell et al. 1998, Denniston et al. 1998, Savastano et al. 1998), where subjects not only encoded CS-US associations, but also precise information about how CS and the US are temporally related, and that CRs could be timed just at the moment when the US is about to be presented (Kehoe et al., 1989).

Furthermore, Rescorla (1988) argued that modern thinking envisages that there is a hierarchical organization where single pairs of elements may not all be treated at the same level of analysis. Associations among some pairs of items may yield new entities that themselves would enter into further associations (Rescorla, 1988). He mentioned a study done in his laboratory which supported the hierarchical organizational view – a study of second-order autoshaping in birds, where there was unequal associability of particular CS-US combinations (Timberlake, 2004).

Before commenting on this capability in organisms of distinguishing between associations of different events, where a hierarchical organisation is being involved, this area seems to deserve more research interest as there has been relatively less research being done to examine the validity of this view in Pavlovian Conditioning, for instance whether humans are capable of showing an effect of hierarchical organisation during conditioning and whether animals in general are capable of distinguishing between parallel associations and pairwise associations, too. Nevertheless, this seems to support the view by Rescorla (1988) that relation between a neural event (CS) and a valuable event (US) is not the only thing learned. This idea prompted a later research in an instrumental learning paradigm (Colwill and Rescorla, 1990).

        To sum up, in light of research evidence, whether contiguity is neither necessary nor sufficient remains highly questionable. Perhaps, it may depend on how one defines contiguity, say whether it is the number of CS-US pairings, or how closely CS and US are related in time – a temporal perspective. It also needs further investigation in terms of how Rescorla’s (1988) claims can stand in phenomenon like overshadowing and potentiation and in types of conditioning like delayed and trace conditioning (Bitterman, 2006). The modern view that there is a hierarchical organization where associations among some pairs of items yield new entities that themselves can enter into further associations, instead of single pairs of elements all treated at the same level of analysis, would deserve further research interest. Pavlovian conditioning remains a sample learning process that demands careful detailed analysis, and would act as a model that would study modification by experience and ultimately characterize the nature of learning. Furthermore, more work can be done on how body’s reactions to drugs and some diseases may involve Pavlovian Conditioning mechanisms, for instance drug tolerance (Siegel, 1983), stress-induced analgesia and immunosuppression (Ader and Cohen, 1981) and other perspective practical applications.

References:

Ader, R., & Cohen, N. (1981). Conditioned immunopharmacologic responses. In R. Ader (Ed.),

Psychoneuroimmunology. New York: Academic Press.

Arvanitogiannis, A. (1997). The missing link between neurobiology and behavior in Aplysia

conditioning. Behavioural Processes, 39, 21-37.

Atkinson, R. L., Atkinson, R. C., Smith, E. E., & Hilgard, E. R. (1987). Introduction

to psychology (9th ed.). New York: Harcourt, Brace, Jovanovich.

Bangasser, D. A., Waxler, D. E., Santollo, J., & Shorts, T. J. (2006). Trace Conditioning and the

hippocampus: The Importance of Contiguity. The Journal of Neuroscience, 26(34), 8702-8706.

Bitterman, M. E. (2006). Classical Conditioning Since Pavlov. Review of General Psychology,

10(4), 365-376.

Blaisdell, A. P., Denniston, J. C, Miller, R. R. (1998). Temporal encoding as a determinant of

overshadowing. Journal of Experimental Psychology: Animal BehavaiorProcesses. 24(1),

72–83.

Brandon, S. E. (1981). Key-light-specific associations and factors determining key pecking in

noncontingent schedules. Journal of ExperimentalPsychology: Animal Behavior Processes,

7(4), 348–361.

Brandon, S. E., Satake, N., & Bitterman, M. E. (1982). Performance of goldfish trained on multiple

schedules of response-independent reinforcement. Journal of Comparative & Physiological

Psychology, 96(3), 467–475.

Colwill, R. M. and Rescorla R. A. (1990). Evidence for the hierarchical structure of instrumental

learning. Animal Learning and Behavior. 18(1), 71-82.

Denniston, J. C., Blaisdell, A. P., Miller, R. R. (1998). Temporal coding affects transfer of serial

and simultaneous inhibitors. Animal Learning and Behaviour.26(3), 336–50.

Gibbon, I., Baldock, M. D., Locurto, C. M., Gold, L. and Terrace, H. S., (1977). Trial and intertrial

durations in autoshaping. Journal of Experimental Psychology: Animal Behaviour. 3(3),

264-284.

Gibbon, J., & Balsam, P. (1981). Spreading association in time. In C. M. Locurto, H. S. Terrace, &

J. Gibbon (Eds.),, Autoshaping andconditioning theory (pp. 219-254). New York: Academic

Press.

Hawkins, R. D., Abrams, T. W., Carew, T. J., Kandel, E.R. (1983). A cellular mechanism of

classical conditioning in Aplysia: activity-dependent amplification of presynaptic facilitation.

Science, 219:400–415.

Jenkins, H. M., Barnes, R. A., & Barrera, F. J. (1981). Why autoshaping depends on trial spacing.

In C. M. Locurto, H. S. Terrace, & J. Gibbon (Eds.), Autoshaping and conditioningtheory (pp.

255-284). New York: Academic Press.

Kehoe, E. J., Graham-Clarke, P., Schreurs, B. G. (1989). Temporal patterns of the rabbit’s

nictitating membrane response to compound and component stimuli under mixed CS-US

intervals. Behavioral Neuroscience. 103(2), 283–295.

Klatsky, R. (1980). Human memory (2nd ed.). San Francisco: Freeman.

Papini, M. R., & Bitterman, M. E. (1990). The role of contingency in classical conditioning.

PsychologicalReview, 97(3), 396–403.

Rescorla, R. A. (1968). Probability of shock in the presence and absence of CS in fear conditioning.

Journal of Comparative and PhysiologicalPsychology, 66(1), 1-5.
Rescorla R. A. (1988). Pavlovian Conditioning. It’s Not What You Think It Is.
American

Psychologist, 43(3), 151-160.

Savastano, H. I., Hua, Y., Barnet, R. C., Miller, R. R. (1998). Temporal coding in Pavlovian

conditioning: Hall-Pearce negative transfer. Quarterly Journal ofExperimental Psychology.

51(2), 139–153.

Siegel, S. (1983). Classical conditioning, drug tolerance, and drug dependence. In R. G. Smart, E B.,        Glaser, Y. Isreal, H. Kalant, R. E., Popham, & W. Schmidt (Eds.), Research advances in

alcohol anddrug problems (Vol. 7, pp. 207-246). New York: Plenum.

Spear, N. E. & Rudy, J. W. (1990). Tests of learning and memory in the developing rat. In

Developmental Psychobiology: Current Methodological and Conceptual Issues, ed. H. N.

Shair, H. A. Barr, M. A. Hofer. New York: Oxford University Press.

Staddon, J. E. R. and Zhang, Y. (1991). On the assignment-of-credit problem in operant learning.

In: M. L. Commons, S. Grossberg and J. E. R. Staddon (Editors), Neural Networks of

Conditioning and Action, the 12th Harvard Symposium. Erlbaum Associates, Hillsdale. NJ, pp. 279-293.

Timberlake, W. (2004). Trends in the Study of Pavlovian Conditioning. International Journal of

Comparative Psychology, 17(2), 119-130.

This student written piece of work is one of many that can be found in our University Degree Cognitive Psychology section.

(?)
Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Related University Degree Biological Sciences Skills and Knowledge Essays

See our best essays

Related University Degree Cognitive Psychology essays

  1. Learning and memory Journal Article Review

    It was expected that participants having good explicit knowledge of the material would regularly follow the sequence in the inclusion condition but not under the exclusion condition. However, people having no explicit knowledge about the material tend to generate the sequence equally often on inclusion and exclusion trials.

  2. Cognitive Psychology - The processes involved in attention.

    Is the control of action theory testable? � The benefits of having a broad set of theoretical constructs that are meaningfully related for the explication of a large body of evidence must be contrasted with the benefits of specific theories for specific effects.

  1. Freud and Bandura: A Critical Evaluation of Two Human Behaviour Theories

    Internal conflict is said to be a result of the id, ego and super ego competing for the limited amount of psychic energy available and an undying state of tension resulting from longing for pleasure, having anxiety for reality, and an obligation to moral conduct (Burger, 2008 ; Ryckman, 2004).

  2. Schizophrenia and related psychosis.

    regulated are so different because of the psychosis (Haddock et al 1990). The vulnerability / stress model offers a formulation of psychotic illness which recognises the biological influences on psychosis but also acknowledges the way behaviour, experiences and beliefs of people with psychosis may be shaped by psychological and social factors.

  1. Cognitive perspective

    Objects from the environment and will have different texture gradients it depends on the distance. The ambient optical array providing direct sensory information rather than they're being a need for the brain to interoperate incoming data in the light from experience.

  2. Free essay

    The Effect of Sleep Quality on Sleepiness, Cognition and Mood

    Knowledge concerning consequences of chronic partial sleep deprivation, as it occurs in real life, is incomplete (Meerlo et al., 2008; Pilcher & Huffcutt, 1996). The aim of the present study is to investigate the impact of reduced quality of sleep on sleepiness, cognitive performance and mood.

  1. What types of memory does the hippocampal formation contribute to?

    Morris et al?s (1982) study of rats in a water maze found that the hippocampus may play an important role in spatial memories. When rats were placed in milky water, they had to swim around until they found an underwater platform through trial and error.

  2. What is classical conditioning and how is it relevant to phobias in humans? ...

    properties of the significant stimuli with which they have been related and so alter behaviour: people react differently in the view of a pile of money and of a pile of papers because money has been related with attractive goods, e.g.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work