Immunostaining and In Situ Hybridization Lab Report

Authors Avatar by savaria (student)

Immunostaining and In Situ Hybridization

Introduction and Theory

The study of gene expression provides invaluable insight into an organism's structure and function; how it is that from a mere embryo genes can control which cells, tissues, organs and limbs will develop, providing the organism with the inherited traits that specifically adapt it to its forthcoming environment. Mutations of particular genes are sometimes associated with certain birth defects. Should an organism with a mutation in just one gene be born with a specific birth defect, it gives a clue as to the gene's function. The question of its intended function may be better understood by discovering whether it became inactive during development to cause the defect. Of the collective amount of genes inherited by an organism not all are actively expressed ("turned on" and functioning). If expressed, it will be transcribed into RNA, specifically mRNA, providing the coding blueprint for a particular protein. When inactive and not expressed, no RNA is transcribed and thus no protein produced, perhaps because the protein is no longer needed or not required in a particular area of the body. To prevent the unnecessary expenditure of energy a core feature of many organisms was similarly evolved to inactivate genes that serve no current purpose.

Therefore a technique that enables the visualization of the internal embryonic environment will confirm whether RNA is present; its presence in an area is a good indicator that the gene coding for the RNA is performing a task required by the organism. In Situ Hybridization is just one biological technique that enables researchers to study such prenatal development. Specific probes are utilised to detect RNA. Due to its single-stranded nature, a complimentary length of single-stranded nucleic acids (the probe) is synthesized to hybridize through specific base pairing with the RNA of interest (see Figure One*). An embryo is placed in a solution containing this specific probe. The probe then locates the places in the organism where the RNA is present and hybridizes to it, hence the term "in situ hybridization" ('In situ' being Latin for 'in its original place'). The probe must be chemically labelled, whether by a radioactive label, a label that fluoresces under Ultraviolet light or one that can be detected by an antibody. This label, coupled with the probe, becomes the 'reporter' molecule, its visualization of which, enables localisation of RNA (or in fact DNA) sequences in heterogeneous cell populations. This includes tissue samples as well as environmental samples. Riboprobes even allow the researcher to localise and assess the degree of gene expression, particularly useful in neuroscience.

Figure One: Diagram to illustrate nucleic hybridization during In Situ Hybridization techniques.

Other applications of In Situ Hybridization include its use in microbiology, studying the morphology and population structure of microorganisms; the method is extremely sensitive and can detect the amount of mRNA contained in a single cell. Its application in profiling embryonic tissue (developmental biology) and establishing abnormal gene expression is reflected in other areas such as the profiling of pathogens in pathology. Furthermore, the technique is used in karyotyping and phylogenetic analysis due to the revolutionary ability Fluorescence in Situ Hybridization (FISH) had upon viewing chromosomal aberrations. Unique FISH patterns can be displayed even on individual chromosomes, showing defects. This is integral to a great deal of prenatal analysis, as it allows diagnosis of potentially fatal abnormalities before premature mortality occurs i.e. miscarriage. A suitable treatment can then be administered, or in some cases, defective development terminated. Physical mapping of clones on chromosomes is made possible because of this. We can directly assign previously-mapped clones to chromosomal regions associated with heterochromatin or euchromatin.

In Situ Hybridization is distinct from immunohistochemistry (IHC), which usually localizes proteins in tissue sections, rather than nucleic acid sequences. 'Immunostaining' was later developed as a term to encompass a wider variety of antigen-antibody staining methods used in histology and cell biology. The principle of this staining is that, by taking advantage of antigen-antibody (Ag-Ab) specific interactions, the presence of a specific protein in a tissue can be established, by using its known antibody to identify it. A specific monoclonal or polyclonal antibody is bound to the target immunogen before the Ag-Ab link is amplified (more true for 'indirect' immunostaining, see below) and visualized by an indicator system. Labelling with colouring (fluorescent) agents or electron-opaque substance (ultrastructural tags) beforehand allows such visualization. When using colouring agents, for instance, the emission of fluorescence when exposed to light of a particular wavelength (immunofluorescence) detects the Ag-Ab reaction.

There exists two means for utilizing immunostaining practices: a direct method and an indirect method. Following the evolution of IHC it has become typical to employ the indirect approach, which is not only cheaper but has the distinct advantage of producing a stronger signal. In the direct method there is no such amplification and therefore the Ag-Ab reaction appears very weak. It is a one-step staining process involving the labelling of one antibody which reacts directly with the antigen contained in the tissue section; it is simple and relatively fast. This method has since been improved, techniques adapted to progressively increase the sensitivity without the detriment of increasing the non-specific staining (background matter) as the lower levels of antigen are visualized. What is now commonly used as the successor to this method is the indirect technique for detection, which involves a primary unlabelled antibody, detected by a secondary antibody. The secondary antibody can be visualized with the aid of an enzyme conjugated to it (such as peroxidase, alkaline phosphatase or glucose oxidase; this is the indirect immunoenzyme method). With further secondary antibodies attaching to the primary (see Figure Two*), as well as even incorporating a third tertiary layer, the Ag-Ab signal is amplified even more with greater sensitivity. Concerning the three-stage methods, their early use did not label the second antibody and added an anti-enzyme antibody to which the enzyme had formed a complex.

Join now!

Figure Two: Direct and Indirect Immunostaining

Today, more complex arrangements of antibodies and molecules detect antigenicity. Biotin and (strept)avidin in these complexes provide the best sensitivity and is used in most laboratories either as a conjugate or complex.

As well as correct antibody choice for the target antigens, full preparation of the samples is crucial to maintain cell morphology and the antigenicity of target epitopes (antigen component recognised by the paratope of an antibody). Often the sample tissue is perfused or blood-rinsed to prevent interference of hematologic antigens with those target antigens needing to be detected. ...

This is a preview of the whole essay