• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Functions. Mappings transform one set of numbers into another set of numbers. We could display a mapping in three ways

Extracts from this document...

Introduction

Functions

Mappings transform one set of numbers into another set of numbers. We could display a mapping in three ways

  • y = 2x + 1

image00.png

image09.png

image26.pngimage17.png

image32.png

image37.pngimage35.pngimage36.png

  • image01.pngimage38.pngimage02.pngimage03.png

y = x2                 is an example of a many-to-one mapping

y = ±√x        is an example of a one-to-many mapping

Functions only have one output for each input. They are one-to-one or many-to-one mappings.

Function Notation

f(x) = 2x + 1                xЄ Rimage04.pngimage05.png

image39.png

It is called the domain.

image40.png

f:x --> 2x + 1image41.pngimage42.png

The set of outputs is called the range.

f(x) = x2        xЄ R

is f(x) ≥ 0        or         f ≥ 0

BUT NOT x ≥ 0

We can think of the domain as the values on the x axis and the range as the values on the y axis.

It is often easiest to find the range by sketching the graph.

Sometimes we need to limit a domain so that all the inputs give an output (ie can't square root a negative number and cannot divide by zero.

f(n) means find the value of f(x) when x = n

Check that roots of the equation lie within the domain, otherwise reject them

Composite Functions

image13.pngimage12.pngimage11.pngimage10.pngimage08.pngimage07.pngimage06.png

f(g(x)) we write as fg(x)

Do g(x) first then f(x) !!!

Note that in general fg(x) ≠ gf(x)

Inverse Functions

If a function is one-to-one then an inverse function exists, called f-1(x)

...read more.

Middle

An asymptote is formed where there is a "forbidden" number. For the domain, a vertical asymptote is formed. For the range, a horizontal asymptote is formed.

To find the inverse of a quadratic function, swap x and y and complete the square.

Algebraic Fractions

Simplifying

To simplify

  • Look for common factor in the numerator and denominator
  • Sometimes we have to factorise first
  • If we have fractions in the numerator or denominator, multiply to remove the fraction

Multiplying and Dividing

  • Multiply the numerators and multiply the denominators.
  • Cancel where necessary
  • Where one fraction is divided by another, invert/flip the second fraction and multiply.

Adding and Subtracting

  • To add or subtract fractions, they must have the same denominator
  • Be careful when subtracting (especially where there are double negatives)
  • When the denominators have no common factor, their product gives the new denominator (multiply the numerator accordingly)
  • It may be necessary to factorise the denominators first to spot the common factors

Writing Improper Fractions as Mixed Numbers

  • Improper fractions, where the numerator is larger than the denominator can be written as mixed numbers
  • The same can be done with algebraic fractions, where the numerator can order that is equal to or larger than the denominator
  • The remainder is written as a fraction
  • There are two methods for doing this
  • Polynomial long division
  • Remainder theorem
  • Remainder has to have a lower power than the divisor

        Let F(x)

...read more.

Conclusion

#160;     sinAcosA + sinAcosA

                =        2sinAcosA

Cos(2A)        =        cosAcosA - sinAsinA

                =        2cos2A - 1

                =        1 - 2sin2A

Tan(2A)        =         tanA + tanA

                        1 - tanAtanA

                =           2tanA  

                        1 - tan2A

Can calculate sin(3A) by expanding sin(2A + A)

((sin(3A) = 3sinA – 4sin3A))

Expressing aSinθ +  bCosθ as a Single Sin or Cos

aSinθ +  bCosθ Ξ Rsin(θ + c)

Rsinc = b

Rcosc = a

R = √a2 + b2

R is the min/max value (with -R being the max/min value)

Differentiation

We call (function)n a function of a function.

Chain Rule

dydyduimage31.pngimage30.png

dx        du        dx

When y = [f(x)]n

dy        f'(x) n [f(x)]n-1image30.png

dx        

dy  1  image30.png

dx                dy/dx

The Product Rule

If y = f(x)g(x)

dy             v du        u dvimage30.png

dx               dx           dx

The Quotient Rule

If y =          f(x)

        g(x)

dy             v du        u dvimage30.pngimage33.png

dx               dx           dximage34.png

                    v2

Differentiating ef(x)

If y = ef(x)

dy               f'(x)ef(x)image30.png

dx                

Differentiating ln(x)

If y = ln(x)

dy1image30.png

dx                x

If y = ln(f(x))

dyf'(x)image30.png

dx                f(x)

∫x-1 dx = ln(x)

Differentiating Trig Functions

If y = sinx

dy        cosximage30.png

dx

If y = cosx

dy        -sinx

dx

If y = tanx

dy   1   _                sec2ximage30.pngimage30.png

dx        cos2x

If y = secx

dy sinx _                secxtanximage30.pngimage30.png

dx        cos2x

If y = cossecx

dy cosx                -cosecxcotximage30.pngimage30.png

dx        sin2x

If y = cotx

dy  -1  _                -cosec2ximage30.pngimage30.png

dx        sin2x

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Core & Pure Mathematics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Core & Pure Mathematics essays

  1. Marked by a teacher

    The Gradient Function

    5 star(s)

    6x1 6x1 y=3x3 3(3x3-1) 9x2 9x2 y=3x4 3(4x4-1) 12x3 12x3 "Odd functions" Curves of y= axn Gradient Function x1/2 0.5x-0.5 x1/4 0.25x-0.75 x-1 -x-2 x-2 -2x-3 -2x2 -4x It is clear to see that the overall equation for the gradient function of this, or any curve y=axn is naxn-1.

  2. The open box problem

    This is not the exact answer because the actual answer but is many decimal places long. I will now look to see if I can spot any patterns. Through random investigation and experimenting I have worked out the width of each rectangle divided by the value of x for that rectangle and come up with this table.

  1. Numerical integration can be described as set of algorithms for calculating the numerical value ...

    M1- M2= 0.014904178 M2-M4 = 0.003624350 The ratio between the differences is (0.003624350/0.014904178)= 0.2421. This means that as the height of the rectangles half (h/2) and the number of rectangles doubles, the error is 1/22. This absolute error can be derived form the following concept: An area under a curve uses Mn rectangles, each of height h.

  2. MEI numerical Methods

    tanx - 1, I could then compare my approximation of the root which the one autograph provided. Formula application: For my spreadsheets to work I had to create a formula for; * The method of bisection * Secant method * False position method * Fixed point iteration * I used

  1. Math Portfolio Type II - Applications of Sinusoidal Functions

    = 0.846 sin[0.015(n -127.798)] + 6.362. This is found through using the TI-84 Plus graphing calculator. All the coordinates are listed in a table and the equation is found using sinusoidal regression, which is done with the graphing calculator. 6.

  2. Numerical solutions of equations

    x4 = -1.220812 x5 = -1.220744 x6 = -1.220744085 x7 = -1.220744085 I can see some convergence from x5. There has been no change in the x-values between x6 and x7 for this number of decimal places. I know that this method for finding the root has worked.

  1. Math assignment - Families of Functions.

    The y-intercept for an absolute value function is b, and it is not to be forgotten that b is inside the absolute value symbols. So, you calculate the graph through using the three points that you have got, the y-intercept, the vertex, and the point, symmetric to the y-intercept.

  2. C3 COURSEWORK - comparing methods of solving functions

    method to find the same roots. y= x³+3x²–3 By using Decimal search: Find the root in the interval [0, 1], n x f(x)=x³+3x²–3 1 0 -3 2 0.1 -2.969 3 0.2 -2.872 4 0.3 -2.703 5 0.4 -2.456 6 0.5 -2.125 7 0.6 -1.704 The root lies between 0.8 and

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work