• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

I have decided to choose and investigate; "exploring the characteristics of a sensor."

Extracts from this document...

Introduction

Instrumentation Task

Characteristics of an LDR

Introduction

This Instrumentation task is an independent project, aiming to demonstrate my practical, experimental and planning skills. I have the choice of three options in which to do so, and they are as follows…

  • Building and testing a sensor
  • Exploring the characteristics of a sensor
  • Designing and assembling a measurement system, and using the sensor to make a measurement

From these alternatives I have decided to choose and investigate; “exploring the characteristics of a sensor.” I have chosen this criteria as I think I can relate my physics thoughts and experimental skills to this I can relate my physics thoughts and experimental skills to this aspect well. I will decide on a simple sensor so I can use its properties to perform an affective instrumentation task.

I contemplated on doing the other two tasks, as I feel they are a little impractical and I cannot perform them scientifically as well as the characteristics of a sensor.

How will I perform this task?

From the sensors that are available to me I have decided to choose an LDR (Light Dependent Resistor). This is a light detecting sensor in which can be set up simply in a circuit, to explore a characteristic of its properties.

...read more.

Middle

Once the apparatus are set up and all fair test procedures are complete, I must obtain the results. I decided to start the LDR 40 cm away from the light source, and work down to 40 cm. This is so I can just simply cut down the black out tube, rather than re-make it. I will work down from 40cm – 10cm in 2 cm’s at a time. Any less would be a little impractical and irrelevant, but any more could affect the general pattern to the results. I will simply tape the LDR to the ruler as I move it down, and record the readings in a suitable table. The ruler and ray box will be taped down at all times, throught out the experiment.

The readings in which I will record are the voltage across the LDR and the current in the LDR circuit. By doing s o I can calculate the resistance using the formula: Ω = V/I, after the experiment.

Prediction

Generally, I predict that as the light intensity increases the resistance will decrease, resolving the current to decrease as well. I know this due to previous education in physics lessons. Basically as the LDR gets closer to the light source the light intensity increases.

...read more.

Conclusion

To resolve this problem I decided to lower the Voltage to the LDR and so I could use a milli-meter for most of the experiment. This way when dividing the voltage by the current to get the resistance, the gaps between the results will not be as high. This is what Results 3 show, and as you can see by the graph it produces a clear equal increase of resistance in the LDR.

Evaluation

Overall I believe my experiment to be a success, the results were fairly accurate as they followed my prediction and conclusion. However, there was one anomalous result with in the second set of results. At 22cm away from the light source the current increased to 0.04 from 0.03, when in theory it such have decreased. But this little anomaly didn’t prove to be a problem and did not affect the experiment as a whole.

If I was to perform this experiment again I think I would perhaps investigate one other characteristic of an LDR and compare my results. Maybe I could use the LDR and a resistor to form a potential divider to make a light sensor, and see how the brightness of light affects the resistance. This way I could view two different experiments and see which will affect the resistance greater.

image02.pngimage03.pngimage00.pngimage01.png

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Investigating how distance affects the light shining on the L.D.R.

    Analysing The closer the bulb to the L.D.R, the higher the average distance measured by mA. At the end, the further away from the L.D.R, the closer together the results are.

  2. The aim of the experiment is to verify the maximum power theorem and investigate ...

    The wooden block is moving in constant velocity. 4. All blocks are moving at the same time. 5. The mass of the rubber band is neglect. Errors and Accuracy In this experiment, we had made several experimental errors, we can improve the experiment with the following the improvements: First

  1. Making, Calibrating and Testing a Sensor

    The final area of my sensing circuit to be tested using my current equipment setup is the resolution. Ideally for a parking sensor the time response should change frequently because the car will be moving at a steady pace and the sensor should be able to keep up with the speed the car is doing.

  2. Sensors cwk. The aim of this coursework is to construct a potential divider circuit ...

    The simplest way in which to show how a LDR works is by putting it in a potential divider. A potential (or voltage) divider is made up of two resistors. The output voltage from a potential divider will be a proportion of the input voltage and is determined by the resistor values.

  1. Physics - Sensor Project

    of two resistors one of which is variable and one which is fixed, this is to compare the resistance as the resistance of the sensor changes, this can be shown by using a voltmeter across the resistors. Plan Aim: to calibrate a water level sensor using the main components of

  2. physics sensor coursework

    intensity/ lux Mean reading/ V Resistance/ ohms 0 7.23 11 774.34 10 6.31 5817.07 20 4.75 2655.12 30 3.87 1840.76 40 3.47 1567.48 50 3.11 1357.14 60 2.75 1173.80 I worked out the resistance by first finding the constant potential across terminal B, using the potential divider equation: V1 = (V R1)/ (R1 + R2)

  1. Practical Project (2863/02): The Characteristics of a Shunt Wound Motor

    avoids too much damage of the bearings in the motor (which would be more of a risk if there was only one strap involved in the experiment). The torque would be measured by taking the tension of the straps and multiplying that by the radius of the motor.

  2. Free essay

    The Relationship Between the Input and Output of an LDR

    Circuit Diagram 2: Battery pack, fixed resistor and LDR connected in series. Voltmeter and the LDR connected in parallel. This is a potential divider circuit. Apparatus Diagram: Safety In this experiment, the dangers are only that the bulb could become very hot so there is a small risk of burns (particularly to the hand).

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work