• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigating a Thermistor.

Extracts from this document...

Introduction

INVESTIGATING A THERMISTOR After deciding to investigate the properties of a thermistor, I chose to be more specific, and to look at repeatability, accuracy, and sensitivity. I also thought of many different ideas as to what the experiment could be used for: for fridge...??? controlled???. The proceeded by looking at different circuits suitable for exploring sensitivity. I looked into the 'whetstone bridge' circuit: The wheatstone bridge circuit enables more accurate readings, However, I decided on another circuit that acted as a potential divider only using one fixed resistor, which seemed equally suitable for detecting small changes of volts. The reason for this being that I thought it would be interesting to see the effect(s) of changing the fixed resistor (R): After recognizing the importance of (R), I decided on the equipment I was going to use, and then tried using some algebra to tackle the problem of finding the value of R that would give me the biggest change DVo. Equipment: 1 power generator set at 2volts 1 thermistor (RS 0.47Kohms 232-4538) an assortment of fixed resistors some leads some crocodile clips a digital voltmeter Here are my jottings: Vo/Vs=R/R+RTh Vo=Vs(R/R+RTh) (Vo=Vo t2 - Vo t1 (Vo=VsR[1/ R+RTh t2 - 1/ R+RTh t1] At this point I thought it appropriate to take a numerical approach, and use Excel to plot a graph of the equation as I was having difficulty simplifying or manipulating it further. ...read more.

Middle

Bellow are a few diagrams to illustrate this: Experiment: After gaining my background knowledge, and after doing my planning, I felt I was ready to start my experiments. I decided to produce more accurate results, that I would take two sets of results, which would also help to test for repeatability. I started by testing the 470ohm resistor, and the results are as follows: Vo(volts) set 1 Vo(volts) set 2 Average Vo Temp. (degrees Celsius) 1.86 1.86 1.86 86 1.85 1.85 1.85 85 1.83 1.85 1.84 84 1.84 1.84 1.84 83 1.83 1.85 1.84 82 1.83 1.83 1.83 81 1.82 1.82 1.82 80 1.82 1.82 1.82 79 1.8 1.82 1.81 78 1.8 1.8 1.8 77 1.8 1.8 1.8 76 1.79 1.79 1.79 75 1.79 1.74(void) 1.79 74 1.77 1.79 1.78 73 1.77 1.77 1.77 72 1.77 1.77 1.77 71 1.75 1.77 1.76 70 1.75 1.75 1.75 69 1.73 1.75 1.74 68 1.74 1.74 1.74 67 1.73 1.73 1.73 66 1.71 1.73 1.72 65 1.7 1.72 1.71 64 1.71 1.71 1.71 63 1.7 1.7 1.7 62 1.7 1.68 1.69 61 1.68 1.68 1.68 60 1 1.66 1.66 59 1.65 1.65 1.65 58 1.65 1.63 1.64 57 1.63 1.63 1.63 56 1.62 1.62 1.62 55 1.59 1.61 1.6 54 1.59 1.59 1.59 53 1.58 1.58 1.58 52 1.57 1.57 1.57 51 1.56 1.56 1.56 50 1.54 1.54 1.54 49 1.53 1.53 1.53 48 1.51 1.51 1.51 47 1.5 1.5 1.5 46 1.5 1.48 1.49 45 1.47 1.47 1.47 44 1.46 1.46 1.46 43 1.45 1.45 ...read more.

Conclusion

To try and justify my results, I went back to my equation (Vo=VsR[1/ R+RTh t2 - 1/ R+RTh t1] However I manipulated it to give me the specific value of RTh, not a range of values: (Vo=VsR[1/ R+RTh] I proceeded to plot these graphs on Excel: I was then faced with the problem of converting 'resistance of Rth' into temperature, and at first thought that the best way to do this was to was by finding the equation of the line of the calibration graph provided by RS. However, I faced with the problem of logarithmic scales, and due to the large jump in numbers, thought that the equation I produced would not be accurate enough. However, from the 5 ohm graph is clear that DVo increases rapidly with low values of resistance, which still contradicts the calibration graph. The graph of the 100ohm resistor is harder to tell which for which values gives a sharp increase in DVo, as the curve is quite steady. Therefore I am none the wiser as to why my results given do not indictate that 100ohms is more sensitive to low temperatures, and 5ohms is more sensitive to high temperatures. Unfortunately I ran out of time with this project, however I would have liked to have taken more readings, and a second set of results for the experiments above. However, I do think that they were sufficient to conclude that the thermistor has good repeatability, and also that there was little difference between using the 560ohm and 27k ohm fixed resistors. Also, from the fixed resistors I evaluated, 100ohms appears to be the most sensitive. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Marked by a teacher

    Sensing project

    5 star(s)

    Then the experiments should be repeated three times to hopefully similar results. If any of the results seem to be anomalies then that experiment should be repeated to find a clear result. The anomalies result should however but noted and accounted for.

  2. Investigate how the temperature affects the resistance of a thermistor.

    to 1000C; anything that has a smaller scale is not necessary because I am only measuring whole temperatures (not decimals) but anything that has a larger scale may not be as easy to read and so could not give results that are as precise.

  1. Experiments with a thermistor

    * Despite the use of a cardboard 'wall', there would still be external forces acting on the apparatus such as light from the laboratory ceiling lamps; therefore the readings recorded may not be totally accurate. This error can be minimised by performing the experiment in a dark room, where the air is still and light is absent.

  2. To investigate how the temperature affects the resistance of a thermistor.

    The amount of water and the amount of oil must be kept the same because oil does not conduct electricity, some of the energy in the circuit will be lost in the oil just as some of the energy from the heat will be lost and so the more oil there is the more energy that is lost.

  1. I am going to investigate what the resistivity is of a pencil lead. ...

    As the graph seemed to start curving at around 1V I decided to see what the graph looked like if I omitted all of the results passed and including 1V. This would hopefully give me a perfect straight line. As you can see this graph shows that the results from 0V-0.8V produces a perfect straight line of best fit.

  2. silicon project

    Slide 8 You can change the behaviour of silicon and turn it into a conductor by doping it. In doping, you mix a small amount of an impurity into the silicon crystal. N-type - In N-type doping, phosphorus or arsenic is added to the silicon in small quantities.

  1. AC Generator

    Thus making it harder to produce a current. * More suitable way of measuring the speeds - since the hand drill wasn't very accurate in determining the speed, I couldn't speed a constant for each speed limit for each trails thus it couldn't be accurate.

  2. An Investigation into the Resistance of a Thermistor, its Application as a Sensor and ...

    It is for this reason that two sets of results were recorded for each temperature reading - one as the water was being heated; the other as it was allowed to cool. For analysing, we will need to take an average of the two readings.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work