• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigating the Inverse Square Law

Extracts from this document...

Introduction

Investigating the Inverse Square Law

Task:

Do gamma rays from a point source obey the inverse square law?

Planning:

Sources used in research of the above task are:

  • ‘Advanced Level Practical Physics’ – M Nelkon & JM Ogborn, pages 212 – 218
  • ‘Essential Pre-University Physics’ – Whelan & Hodgson, page 406 + 953
  • ‘Essential Principles of Physics’ – Whelan & Hodgson, pages 470 + 472
  • ‘A Laboratory Manual of Physics’ – F. Tyler, page 269
  • http://hyperphysics.phy-astr.gsu.edu/Hbase/forces/isq.html
  • http://en.wikipedia.org/wiki/Background_radiation
  • http://en.wikipedia.org/wiki/Cobalt
  • http://www.imagesco.com/articles/geiger/03.html
  • http://en.wikipedia.org/wiki/Geiger-M%C3%BCller_tube
  • http://en.wikipedia.org/wiki/Breakdown_voltage

The Inverse Square Law states that the intensity of γ-radiation diminishes as the distance from the source increases.

image03.png

Source: http://hyperphysics.phy-astr.gsu.edu/Hbase/forces/isq.html

‘The intensity of the influence at any given radius, r, is the source strength divided by the area of the sphere.’ [1]

The inverse square law can also be applied to gravity, electric fields, light and sound. In relation to electric fields, the electric force in Coulomb’s law follows the inverse square law:

image04.png

‘If gamma rays are a form of electromagnetic radiation and undergo negligible absorption in air, then the intensity, I, should vary inversely as the square of the distance between the source and the detector.’[2]

Air acts as an almost transparent medium to γ-rays, and the intensity (rate of energy arrival per unit area)

...read more.

Middle

[11]

Corrected count rate against 1/(d + d0)2 should produce a straight-line graph, passing through the origin, if the inverse square law is followed.

image06.jpg

Source: ’A Laboratory Manual of Physics’ –F. Tyler, Page 269

The gradient of the line obtained is a measure of the strength of the source used in the experiment.[12] The strength of the source is the activity, A=λN. The decay constant, λ, can be calculated using λ = ln2/t1/2 where the value for the half-life of Co-60 is 5.2714 years[13].

Therefore:

 λ = ln2/t1/2
    = 0.693/1.664 x 108
   = 4.175 x 10
-9

The gradient of the straight line graph will equal λN0e-λt so λ = gradient/ N0e-λt

 Safety Precautions:

To ensure the utmost safety before, during and after this experiment, some guidelines should be followed:

  • Food and drink should not be consumed whilst in the same room as the source
  • Food items should not be stored in the same room as the source
  • The source should only be handled with long handled source handling tongs, and as little as possible
  • Hands should be washed thoroughly after contact with the source
  • If in contact with the source for an extended period, it is recommended that a monitoring badge is worn
  • As the source will radiate in only one direction, it should not be pointed at anyone
  • The source should be locked away in a lead lined box when not in use
  • Open wounds should be covered securely
  • Protective gloves should be warn when handling potentially contaminated items

Errors:

...read more.

Conclusion

Start the stopclock and measure the background radiation for an adequate length of time, e.g. 25 minutes, as background radiation is variablePlace the holder containing the γ-source at 5.0 cm from the window of the G-M tubeStart the stopclock and stop after 10,000 counts are registered. Record this value and repeat twiceMove the γ-source to 10.0 cm from the window of the G-M tube and repeat procedure 5, instead only counting 5000 countsMove the γ-source to 15.0 cm from the window of the G-M tube and repeat procedure 5, instead counting only 1000 countsRepeat procedure 7 for sets of 5.0 cm until a distance of 30.0 cm is reachedTabulate these results and find the average count rate for each distanceEvaluate 1/(d + do)2Using the recorded value for background radiation, evaluate the corrected count rate for each distancePlot the graph of corrected count rate against 1/(d + do)2




Page |


[1] http://hyperphysics.phy-astr.gsu.edu/Hbase/forces/isq.html

[2]Essential Pre-University Physics’ – Whelan & Hodgson, page 953

[3] ‘Essential Principles of Physics’ – Whelan & Hodgson, page 472

[4] ‘Essential Principles of Physics’ – Whelan & Hodgson, page 472

[5] ‘Essential Principles of Physics’ – Whelan & Hodgson, page 472

[6] http://www.imagesco.com/articles/geiger/03.html

[7] http://en.wikipedia.org/wiki/Breakdown_voltage

[8]‘Essential Pre-University Physics’ – Whelan & Hodgson, page 406

[9] http://www.imagesco.com/articles/geiger/03.html

[10]http://en.wikipedia.org/wiki/Background_radiation

[11] ‘Advanced Level Practical Physics’ - M Nelkon & JM Ogborn, page 218

[12] ‘A Laboratory Manual of Physics’ – F. Tyler, page 269

[13]http://en.wikipedia.org/wiki/Cobalt

  • [14]
  •  ‘Advanced Level Practical Physics’ – M Nelkon & JM Ogborn, page 212

[15] http://en.wikipedia.org/wiki/Cobalt

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Mechanics & Radioactivity section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Mechanics & Radioactivity essays

  1. Marked by a teacher

    AS OCR B Advancing Physics Coursework - Making Sense of Data

    4 star(s)

    The minimum and maximum time´┐Ż values were calculated by dividing the distance by the maximum and minimum average velocities of the whole fall respectively. As this error range is associated with time, the variable along the x-axis, a line of best fit through each of the maximum and minimum ranges was drawn to show the difference in gradients as before.

  2. Investigating the factors affecting tensile strength of human hair.

    To work out the strength of each hair I calculated the stress applied to each when breaking. To do all the calculations I used the following formulas: 1. Force (N) = Mass (g) X 0.001 X 9.8 E.g. 10 x 0.001 x 9.8 = Force (N) Force = 0.098N 2.

  1. OCR B Advancing Physics Physics Practical Investigation Coursework Investigating Simple Harmonic Oscillations

    Calculation of error: With the mass values and spring constant a value for frequency can be calculated using the equation: Mass (kg) Measured Undamped Average Resonant Frequency (Hz) Calculated Value for Frequency Using Equation (Hz) Difference 0.10 2.57 2.40 0.17 0.15 2.38 1.96 0.42 0.20 2.12 1.70 0.42 0.25 2.00

  2. Science Coursework - Investigating How Mass Influences Distance Travelled When Firing A Margarine Tub.

    does not need to be stretched as far and is more stable. Each time the margarine tub is launched we found that the elastic band is pulled back to 13 centimetres for a 10N force and 23cm for 20N I have decided to mark these measurements on the floor with chalk so that it is equal each time.

  1. Charles's Law

    The aim of this investigation is to prove Charles's law and through that to find a value for absolute zero. To prove this law, I shall carry out an experiment in which a volume of air is trapped inside a capillary tube at a constant pressure, this is attached to a thermometer and placed in water at various temperatures.

  2. Use of technology in a hospital radiology department. The department of imaging is one ...

    To start the scientific investigation it is important to collect the below equipment. support Stand Aluminium Lead Gamma Alpha Beta Geiger counter Wood Measuring Ruler Source holder Method o To start the investigation, first set up the equipment on the front bench, where every student can see.

  1. Explain how excessive exposure to radiation can cause harm.

    Shield yourself from exposure using the correct procedures. 5. Notify your supervisor if you are pregnant. Procedures for reducing radiation hazards Because any amount of radiation is potentially harmful every effort should be made to reduce doses to a level that is as low as reasonably achievable.

  2. The Physics of an Atomic Bomb

    the fissionable material in a subcritical state before detonation; Bringing the fissionable material into a supercritical mass while keeping it free of neutrons; Introducing neutrons into the critical mass when it is at the optimum configuration (i.e. at maximum super criticality); Keeping the mass together until a substantial portion of the material has fissioned.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work