• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Aim: 'Build a sensor circuit to test the proximity of an object using a light detector to detect light from a bulb reflected f

Extracts from this document...

Introduction

Aim: 'Build a sensor circuit to test the proximity of an object using a light detector to detect light from a bulb reflected from an object.' In this experiment I am going to build a sensor circuit using an LDR, I will then calibrate the sensor and use my results to test and improve the sensor circuit. The LDR works by having a very high resistance when the light intensity is low, which does not allow current to flow through the potential divider circuit. When the light intensity increases significantly, the resistance reduces dramatically and current can flow through the circuit. The resistor within a circuit can be changed to make the circuit more sensitive. The first thing I had to do was to test two different sensors to see which one had better sensitivity. ...read more.

Middle

The LDR was fixed onto a block of wood so it was level with the bulb. A wooden block was also set between the bulb and LDR to stop light being detected directly from the bulb to the LDR. A wooden board was also used as the object that I would measure the proximity of. A one metre scale was measured out and the board was moved 0.05m for each measurement from 1m down to 0.15m. The Vout was recorded at each point on the scale. The experiment was carried out in a dark room. These are diagrams for the above description: Diagram 2 Diagram 3 My final calibration results are shown in table B: Distance/m Voltage Output/V 1.00 1.77 0.95 1.74 0.90 1.76 0.85 1.75 0.80 1.82 0.75 1.80 0.70 1.85 0.65 1.86 0.60 1.93 0.55 1.98 0.50 2.08 0.45 ...read more.

Conclusion

From my data I could see that the error varies with distance. This could be because of the LDR's limited sensitivity when light is reflected from longer lengths. This means that the percentage error increases with distance. To test this systematic error, I could calibrate the sensor for longer lengths, then test it and compare the percentage error to my first results. The effective range of my sensor is around 0.15m to 0.60m. Important properties of a sensor are good sensitivity resolution, rapid response time, small random and systematic errors. A sensors response time is the time it takes a sensor to respond to a change in it's input. Random error could be caused by a fluctuation in the input or from noise generated by the sensor, these errors are always present in experimental data. Systematic errors occur due to disturbing influences usually from the environment around the sensor and are not easily detected. ?? ?? ?? ?? ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Systems and Control section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Systems and Control essays

  1. Build a sensor that detects air flow using an incandescent lamp to detect the ...

    Overall I expect the circuit to work well, as the sir flow increases the voltage across the LED will also increase, thus getting a straight graph in the analysis. Safety: There is nothing too dangerous as I am not planning to use the soldering ion apart from the 12v voltage

  2. My aim is to produce a line follower robot with a bump sensor which ...

    So it the robot goes of course, it will reverse back and carry on following the line. This works because the switch activates a transistor which in turn activates a DPDT relay sending the motor in reverse. Whilst this is happening the capacitor is being charged.

  1. Water level sensor

    Then I started my experiment. I put 100ml water into measuring cylinder and looked the dip of the water to make sure it is accurate. Then I poured them into the beaker. I took down each voltage for corresponding water level.

  2. An electronics firm wishes to introduce a range burglar alarms. This coursework contains the ...

    I kept moving parts that I had already glued. Glue circuit platform in place 10 min. Polystyrene cement. 10 min. None Glue 2 velcro platforms in place and cut and fit velcro to platforms and top/ front. 20 min. Polystyrene cement.

  1. Building a Sensor to Measure Weight, using a Potential Divider and Wheatstone Bridge.

    so the voltage across the top gauge increases and so decreases across the lower gauge. Therefore I predict that the curve of the graph that is associated with the potential divider circuit, which plots output voltage against the weight, will be a negative curve, because as the gauge is strained

  2. Using a Rotary Potentiometer to Detect the Position of a Robotic Arm

    SD stands for standard deviation, and is the measure of the average spread of the data. A larger standard deviation is most desirable, as this means that the data is spread more evenly, and most linearly (results were taken very frequently, and a significant amount of 'plateau' can be seen,

  1. Aim: Build a sensor circuit to test the proximity of an object using a ...

    setting gave the maximum sensitivity as it had the biggest output to input difference. Next, I had to build my circuits. I used a potential divider circuit for the LDR and a simple circuit for the bulb: Diagram 1 For my final circuit design I used an 'orange power pack'

  2. The paper discusses the issues associated with the risks assessed between the organizations bidding ...

    This not only increased the asset and capital contained within the organization as the disposable glove industry at this time was a $3 billion industry but because Safeskin was in the number one position in the U.S with exam gloves this allowed them the accolade of acquiring a top company

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work