• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  • Level: GCSE
  • Subject: Maths
  • Word count: 2012

Investigate the relationship between the T-total and the T-number

Extracts from this document...

Introduction

GCSE Maths Investigation – T shapes

Part 1 – Investigate the relationship between the T-total and the T-number

When the “T-total” equals 37, the T-number is 20.  I will investigate the other T-totals to see if there is a relationship.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81


image00.png

image37.pngimage17.pngimage06.pngimage11.pngimage01.png

T-total

T-number

1 + 2 + 3 + 11 +20 = 37

20image10.png

2 + 3 + 4 + 12 + 21 = 42

21

3 + 4 + 5 + 13 + 22 = 47

22image32.png

4 + 5 + 6 + 14 + 23 = 52

23

5 + 6 + 7 + 15 + 24 = 57

24

6 + 7 + 8 + 16 + 25 = 62

25

7 + 8 + 9 + 17 + 26 = 67

26

The difference between the T-totals is:

37             42                     47                    52               57                62                   67

image02.pngimage02.pngimage02.pngimage02.pngimage02.png

      +5                 +5              +5             +5                 +5                 +5

I will now see if there is any relationship between the T-total and the T-number.  In order to see this I will subtract the T-number from the T-total.

T-number – T-total = Difference

42 – 21 = 21image03.pngimage04.png

47 – 22 = 25

image05.pngimage03.pngimage04.png

52 – 23 = 29

image04.pngimage03.png

57 – 24 = 33

image04.pngimage03.png

62 – 25 = 37

I will put this information into a formula.

Here; n = the T number

          T = T-total

So if n = 20

20 + (20 – 19) + (20 – 18) + (20 – 17) + (20 – 9) = T

              1                2                 3                11

Therefore:

n + (n – 19) + (n – 18) + (n – 17) + (n – 9) = Timage07.png

To simplify:       5n – 63 = Timage08.png

                  T = 5n - 63

I will use one of the T-shapes on the 9 by 9 grid to see if this formula works.

Eg1:        20 x 5 – 63 = 37

This is correct

...read more.

Middle

94

95

96

97

98

99

100

image09.png

T-total

T-number

1 + 2 + 3 + 12 + 22 = 40

22image10.png

2 + 3 + 4 + 13 + 23 = 45

23

3 + 4 + 5 + 14 + 24 = 50

24

4 + 5 + 6 + 15 + 25 = 55

25

5 + 6 + 7 + 16 + 26 = 60

26

6 + 7 + 8 + 17 + 27 = 65

27

7 + 8 + 9 + 18 + 28 = 70

28

The difference between the T-totals is:

40             45                     50                    55               60                65                   70

image02.pngimage02.pngimage02.pngimage02.pngimage02.pngimage02.png

      +5                 +5              +5             +5                 +5                 +5

I am going to see if the formula that I calculated earlier works for a 10 by 10 grid.

Therefore:  T = n + (n-21) + (n – 20) + (n – 19) + (n – 10)

To simplify: T = 5n – 70

This formula is similar except the number that is being subtracted.  However I will see if this works with a T-shape in the 10 by 10 grid.  

T = 5 x 26 – 70

T = 60

This is true because 5 + 6 + 7 + 16 +26 = 60

The equation is correct.  

However, in order to find the relationship between the grid size and the T-total and T-number it must be included in the equation.

So, when n = T-number

             T = T-total

             W = Grid size

image38.png

image12.png

This simplifies to: 5n – 7w

If the grid decreases to 6 by 6, the T-numbers will be closer together.  I noticed that on the previous 2 grids, the numbers being subtracted can be divided by the grid size and both equal –7.

image13.pngimage13.pngimage14.png

I think that a 6 by 6 grid should be:

T = 5n – 42        (-7 x 6 = 42)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

image15.png

T-total

T-number

1 + 2 + 3 + 8 + 14 = 28

14

2 + 3 + 4 + 9 + 15 = 33

15

3 + 4 + 5 + 10 + 16 = 38

16

4 + 5 + 6 + 11 + 17 = 43

17

Part 3:  Use grids of different sizes again.  Try other transformations and combinations of transformations.  Investigate relationships between the T-total, the T-numbers, the grid size and the transformations.

REFLECTION

Horizontal reflection

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

image16.png

38   ,    43                      39  ,  44                    40  ,  45

image02.pngimage02.pngimage02.png

      +5                                +5                             + 5

...read more.

Conclusion

210 +  -20 - -90 – 63 = T

T = 210 – 20 + 90 – 63

T = 217

This is true because the T-total is 217 for this T-shape.  I deliberately used a translation with negative numbers to check that this did not alter the equation.

COMBINING REFLECTION AND TRANSLATION

n = T-number

W = Grid size

Z = across translation

U – Up or down translation

N = new T-number

a = horizontal distance from reflection line

b = vertical distance from the reflection line

T = T-total

HORIZONTAL REFLECTION TO TRANSLATION:

 5n – 7w + 10a + 5 + 5N + 5z – 5wu – 7w = T

image33.pngimage33.png

image34.pngimage35.png

The new T-number needed to be included in this equation otherwise it would not work, because the translation would occur from the original T-number.

This formula works because when tested on a 9 by 9 grid with the T-number being 21 and a being 2, the new t-number is 26 and when translated by 2 and -2 the T-total equals 147.  This agrees with the equation.

TRANSLATION TO VERTICLE REFLECTION:

5n + 5z – 5wu – 7w + 5N + 10bw + 12w = T

image33.pngimage33.png

image36.pngimage35.png

The new T-number needed to be included in this equation otherwise it would not work, because the reflection would occur from the original T-number.

This formula works because when tested on a 9 by 9 grid with the T-number being 76 and the translation being +2 by +6, the new T-number is 24.  When “b” is 1, the T-total equals 318.  This agrees with the equation.

T-shape investigation.doc                5/4/2007  11:53 AM

...read more.

This student written piece of work is one of many that can be found in our GCSE T-Total section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE T-Total essays

  1. T-Total Investigation

    + (v - 2) + (v + 1) + (v + 4) t = 2v-1 + 3v + 3 t = 5v + 2 We can see the formula is the same as for a 3x3 grid. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

  2. Maths Coursework T-Totals

    5 (197 - 192) 42 192 t = (5 x 42) + ( 2 x 9 ) 5 (192 - 187) 41 187 t = (5 x 41) + ( 2 x 9 ) N/a We can see an obvious relationship, that as the T-Shape is translated by +1 in a vertical direction the T-Total is larger by +45 than the previous T-Total.

  1. T totals. In this investigation I aim to find out relationships between grid sizes ...

    + ( 2 x 5 ) 25 (105 - 80) 18 80 t = (5 x 18) + ( 2 x 5 ) 25 (80 - 18) 13 55 t = (5 x 13) + ( 2 x 5 )

  2. Investigate how to calculate the total number of Winning Line

    The total number of winning lines is the sum of these. My modelling on squared paper shows me that in a square grid there are always an equal number of horizontal and vertical winning lines, therefore 1 formula can be used to calculate both.

  1. The object of this coursework is to find the relationship between the total value ...

    the T-Total will go up by 5 (and be a total of 57.) Value of T = 5 + 6 + 7 + 15 + 24 = 57 Value of N = 24 This has proved my prediction is correct, so I will now try and find a rule for the grid.

  2. Maths GCSE Coursework – T-Total

    numbers, as for as grid width of 5 it is 25, which is 5 x 5, and for a grid width of 9 it is 45 which is 9 x 5. We can also see that translations larger than 1 can be found by a(25)

  1. T-Total and the T-Number.

    52 53 54 55 56 57 58 59 60 61 62 63 64 This is an 8x8 grid with 6 "T" shapes inside it. Some of the "T"s are overlapping but this does not really matter. Next to it is a table showing each of the "T"s properties, (T-Number & T-Total).

  2. Objectives Investigate the relationship between ...

    New T-total = 34 + (2*5) = 34 + 10 = 44 As you can see the T-total of T20 is '44' Algebraic Formula While my formula above, will be able to find the T-total of T-shapes translated horizontally, it is not extensive enough and requires a current T-total number

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work