• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Mechanics 2 Coursework - Ladders

Extracts from this document...

Introduction

Mechanics 2 Coursework - Ladders Chapter 1: Aim and Assumptions The aim of this project is to find out whether theory used in the classroom can be applied to a real life situation with satisfactory predictions, and to test the validity of certain equations in a real life situation. Consider this: A man wishes to climb up a ladder of height l and wishes to know if it is safe. He would use the ladder situation we are able to solve in Mechanics 2, and, assuming there is no friction at the wall, he would be able to calculate the height up the ladder x that the ladder would give way. We wish to test whether this is possible. To do this we use a ruler of length 100cm and rest it against a smooth surface (in this case a whiteboard, which is firmly attached to the wall). ...read more.

Middle

This is less important than my other assumptions, because a small inaccuracy will not make difference to our value. We can see the way in which the model works below: First we place the ruler against a smooth wall (the white board) and then let it slide down in a straight line (so that all the forces involved are in the same plane, ensuring a 2d situation). We take 5 readings of each of these heights along the wall, and from these a value of ? can be calculated, enabling us to work out F and therefore �. If we assume equilibrium, the ladder's weight w combined with the weight of the person will balance with R (if we resolve forces vertically). By taking moments about the base, we find that S x sin? = (w+mg)cos?. We work out w by weighing the ruler, which turns out to be 72.2g. ...read more.

Conclusion

We can firstly predict R for all cases, because it does not have an x in its equation. By N2L, R=0.0722 + 9.81x0.2 = 2.03 The values of x I will measure are not uniform, because this shows that x does not have to be uniform to conform to the predictions made. I used values of 90cm, 75cm, 60cm, 40cm and 20cm. To predict the value of ? at which the ruler will slip, I can put these values for x into the previous equations: x=0.2, R= 2.03 Moments about base, 1*Ssin? = (0.0722*0.5+9.81*0.2*0.2)cos? S = F = �R = 0.4*2.03 = 0.812 sin?/cos? = (0.0722*0.5+9.81*0.2*0.2)/1*0.812 = 0.528 tan?=1/0.528 ?=62.17 The value for z from this value of ? comes to 0.884. The others are as follows: x ? z 0.2 62.17 0.884 0.4 44.68 0.703 0.6 33.79 0.556 0.75 28.30 0.474 0.9 24.26 ?? ?? ?? ?? Alex Hayton Mechanics 2 Coursework - Page 1 of 1 Ladders ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Height and Weight of Pupils and other Mayfield High School investigations section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Height and Weight of Pupils and other Mayfield High School investigations essays

  1. Investigating the falling of paper cake cases.

    doing the experiment and it made a big difference to my results. Problems encountered * When two people were doing the experiment, trying to get the same results both times was difficult. This affected out results because the readings were widely spaced out and this is incorrect.

  2. GCSE Physics Coursework

    As well the coursework are similar as they both depend such as distance from the pivot or the weight of the load hung. In both course works the dependent variable is the amount of deflection. As well the methods to both of the coursework are very similar as they are

  1. Statistics Coursework

    The main change I would make would be to use a larger sample to see if the conclusions drawn would still be the same for a larger number of pupils, and this would therefore make the investigations, results and conclusions more reliable.

  2. Mayfield Coursework

    This hypothesis will be boys on average weight more then girls. Again, like before I will create an accumulative frequency table for both year 9 girls and boys and their weights.

  1. Mayfield Maths Coursework

    This is a good method as it is unbiased, which lets all of the data to have a fair and equal chance of being selected. However by using random sampling you can lose time, as it is very time consuming.

  2. maths statistics coursework

    Hypothesis There is a stronger correlation between Height and Weight for Boys and Girls. The correlation between height and weight is stronger for girls than it is for boys in years 10 and 11. I believe this will happen because girls are most likely to start their puberty before

  1. Maths Stats coursework

    Gradient = vertical difference horizontal change Outliers - I will be removing these after I have drawn my box plots prevent myself from having any too extreme values which are mistakes and of which can give not a very accurate mean or Spearman's coefficient of rank correlation.

  2. Data handling coursework

    To draw a frequency polygon I will need to draw an axis with 'hand span (cm)' along the x axis and frequency going up the y axis. I will then plot a bar chart but I will draw it without gaps.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work