• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

An Experiment To Determine The Water Potential Of Sweet Potato & Baking Potato

Extracts from this document...

Introduction

An Experiment To Determine The Water Potential Of Sweet Potato & Baking Potato Introduction This experiment was performed to establish the water potential of different types of potato in various concentrations of sugar solution. The sweet potato has been chosen because it has a higher sugar content than baking potato, which should affect the water potential. Apparatus & Materials 1 Cork borer 11 boiling tubes 1 Beaker 1 baking potato Test tube rack 1 sweet potato Measuring cylinder Scalpel Cutting Tile Scales Ruler Method 1. Use the cork borer to cut out 11 cylinders of sweet potato. 2. Cut each cylinder to 5cm lengths. ...read more.

Middle

0.74 0.1 4.52 5.02 0.5 0.2 5.07 5.57 0.5 0.4 4.62 4.99 0.37 0.6 4.28 4.32 0.04 0.8 4.36 4.24 -0.12 1 5.06 4.58 -0.48 1.2 4.89 4.43 -0.46 1.4 4.93 4.31 -0.62 1.6 4.97 4.1 -0.87 1.8 4.72 3.84 -0.88 Conclusion This experiment shows the sweet potato absorbs water at from a solution with a higher concentration of sugar present as oppose to the baking potato which stops absorbing water when the solution became 0.2 molar. This shows there is a higher concentration of sugar in sweet potato than in baking potatoes because the only moves along a gradient where one concentration is higher on one side. ...read more.

Conclusion

The only things which may have affected the results were the varied weights of the cylinders of potato if they were all weighed out to the same weight they would all have the same surface area so there would be the same area for the water to diffuse across. The temperature should have also been recorded and kept constant throughout the experiment because if the temperature increases the water will diffuse faster at higher temperatures. In the last result for the baked potato where the weight went up again was because the cylinder was not dried properly and the solution when at that concentration was very viscous so it stuck to the outer layer of the cylinder thus increasing the weight. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Life Processes & Cells section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Life Processes & Cells essays

  1. Marked by a teacher

    An Experiment to determine Water Potential in Potato Tissue.

    4 star(s)

    After 1 hours, I took them out and dried the excess solution soaked into the potato by tissue. Then I measured them on an electronic balance; I recorded the results in 3 decimal places. Below are the results that I obtained from my first experiment: Molarity (moldm-3) Initial Mass (g)

  2. Investigating the cellular water potential of potato cells.

    Use a graduated pipette in order to do this and the dilution table and place the solutions into boiling tubes. Making sure to mark the boiling tubes so that it is obvious what concentrations are in which boiling tubes.

  1. An Investigation to determine the Water potential of Potato cells.

    to begin with: 3.6, 1.25 and 1.07g respectively.codb dbr sedbdbw ordb dbk indb fodb db! I made up 20ml of each of my sucrose solutions and placed three different potato tissues into each of the test tubes. After 20 minutes I removed them and I used the scales to weigh

  2. To determine the water potential of potato tuber tissue

    This means that the potato chip will neither gain nor loose mass (thus the y-value is 0 on a graph). However, when the solute potential of the solution on the outside of the potato chip falls (becomes more negative) then the equilibrium of the systems changes: ?

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work