• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Controlled Assesment Experiment - The extension of a rubber band depends on the force applied.

Extracts from this document...

Introduction

________________

SCIENCE

CONTROLLED ASSESMENT

The extension of a rubber band depends on the force applied.

Hypothesis

I anticipate that an increase in the load on the elastic band will result in an increase in the extension of it. I think that the extension will be proportional to the load on the elastic band. I think that there will be a certain amount or energy lost and that this will increase proportionally as the load increase. This will be lost due to heat energy.

What are forces?

Force is defined as a push or pull that changes an object's state of motion or causes the object to deform (change the natural form). Newton defined a force as anything that caused an object to accelerate -F = ma, where F is force, m is mass and a is represented as acceleration. Friction is the resistance between two surfaces that are in contact with each other.

A force acting on an object may cause the object to change direction, to change shape, to start moving, to stop moving, to accelerate or decelerate.

The familiar force of gravity pulls you down into your seat, towa rd the Earth's Center. It feels like your weight. Without these fundamental forces, human and all the other matter in the world would fall apart and float away.

Example:

...read more.

Middle

* The extension of an elastic object is directly proportional to the force applied, provided that

           the limit of proportionality is not exceeded :

F = k x e

F is the force in newton (N).

k is the spring constant in newton per metre (N/m).

e is the extension in metre (m).

Mass and weight are different in physics. For example, mass doesn't change when you go to the Moon, but your weight does. Mass shows the quantity, and weight shows the size of gravity.

If you know your mass, you can easily find your weight because

         W = mg

where:

* W is weight in Newton (N),

* m is mass in kg, and

* g is the acceleration of gravity in m/s2

        Momentum measures the 'motion content' of an object, and is based on the object's mass and velocity. Momentum doubles, for example, when velocity doubles. Similarly, if two objects are moving with the same velocity, one with twice the mass of the other also has twice the momentum.

Force, on the other hand, is the push or pull that is applied to an object to CHANGE its momentum. Newton's second law of motion defines force as the mass times ACCELERATION.

...read more.

Conclusion

1. I will suspend a rubber band from a cup hook screwed into the top of a doorway.

2.  A metal ring that can be opened/closed will now be attached to the suspended band,

3. I will hang a bucket beneath, so that I can add weight.

4. Now I will measure the extension of the rubber band without any weight

5. I will now a 2p coins to the bucket, to see how the weight can affect the extension, I will allow the elastic band to stretch and stay in position for 60 seconds before taking a reading, with my ruler

6. Each time I will add a 2p coin.

7. I will keep adding weights and taking note of the extension until the rubber band exceeds the elastic limit.

8. I'm repeating the test two times, to get an average.

RISK ASSESSMENT

This experiment does not carry many hazards. Bags and coats will be moved out of the way to ensure that no one will trip over them. Whilst loading the elastic band care will be taken to make sure that the elastic band is loading carefully to try and ensure it does not snap. However I will be wearing safety glasses to prevent injuries to my eyes if the band does snap

Variables:

Independent: Mass hung on elastic

Dependant: Length that the elastic extends or retracts.

Controlled: Same conditions – thus the behaviour of the elastic is constant and Temperature of the rubber band

                                                                                                                                                  Romanna Karam

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Marked by a teacher

    Do Elastic Bands Obey Hooke Law

    3 star(s)

    made this experiment better there are a few things that could have been done differently.

  2. Bouncing Ball Experiment

    Removing the maximum and minimum results and taking an average of the middle three results also provided more accurate results. The maximum and minimum results were included when working out the variation between results however, seeing as the maximum and minimum results were produced by the experiment and are therefore part of the variation between results produced by the experiment.

  1. In this experiment I aim to find out how the force and mass affect ...

    That's basically it, the rest is all common sense. Fair Testing As with all scientific experiments, only one variable must be altered at one time. All the rest must remain constant to ensure good sensible results. By using present knowledge, I know that the following factors can affect the outcome and must be controlled: � Height of ramp -

  2. Isaac Newton's second Law of Motion states that, Force = Mass x Acceleration.

    This will record accurately the increase in velocity and then using either 5 or 10 tick lengths we can work out the recorded acceleration and compare it to the projected acceleration that we have worked out using Newton's second Law.

  1. Squash Ball and Temperature Investigation

    Ask you partner to measure where it bounced up to. 6. Re- drop the heated ball three times to gain an average result and record the results in a table. 7. Continue on as above, increasing the time you heat the ball by 15 seconds each time until the height of the bounce seems constant.

  2. Acceleration, Force and Mass

    the tape and it does this at a rate of 200 dots per second. By taking a sequence of these dots (for this experiment I will use 10) the acceleration of the object can be determined. Therefore if the dots are equally spaced then the acceleration is constant and if

  1. Investigating the amazingness of theBouncing Ball!

    the height reached by the ball, H0 being the initial height the ball was dropped at, b being the number of bounces and ? being the decay constant. Since the height is proportional to the number of bounces, taking logs to the base e In H = in H0 -

  2. Investigate the rule of F = M*A and so investigate the relationships between acceleration, ...

    do what it is already doing unless a resultant force is acting on it. I am used to the idea that an object on the ground, which is given to start it, will come to rest quickly. Of course once it is moving, friction is a force that acts upon

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work