• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12

Investigation to Determine how the Height of a slope Affects the Speed of an Object Travelling Down the Slope

Extracts from this document...


Investigation to Determine how the Height of a slope Affects the Speed of an Object Travelling Down the Slope


I predict that the higher the slope the faster the speed of the object travelling down the slope. This is because the higher the slope, the more gravitational potential energy an object has when it is at the top of the slope and as the object travels down the slope gravitational potential energy is being converted in kinetic energy so the more gravitational potential energy the object has at the top, the greater the kinetic energy at the bottom and the greater the kinetic energy the greater the speed.

g.p.e.=mgh                                           k.e.=½mv²

g.p.e. is gravitational potential energy    k.e. is kinetic energy

m is the mass of the object                      m is the mass of the object

g is the gravitational field strength           v is the velocity of the object

h is the height the object is at

These formulas show that gravitational potential energy is related to height and that kinetic energy is related to speed. Because of the laws of conservation of energy, energy is never lost, only converted to different forms, the gravitational potential energy at the top of the slope is roughly the same as the kinetic energy at the bottom although some energy is converted to heat because of friction. This allows me to work out a formula that links the speed or velocity of an object to the height it started at.

g.p.e.=k.e.                        sub in equations

mgh=½mv²                        divide by mass

gh=½v²                        multiply by 2

v²=2gh                        square root

v=√2gh                        sub in gravitational field strength of earth

v=√20hThis is the equation linking speed to height

...read more.






45cm/0.45m                        v=√20h



40cm/0.4m                        v=√20h



35cm/0.35m                        v=√20h



30cm/0.3m                        v=√20h



25cm/0.25m                        v=√20h



20cm/0.2m                        v=√20h



15cm/0.15m                        v=√20h



10cm/0.1m                        v=√20h



The speeds we record should be slightly lower due to friction

        To keep the experiment accurate we will use a barrier to help us to know when the marble has reached the end of the run-off distance and eliminate as much human error as possible. To keep the marble rolling in a straight line we will use a drainpipe cut in half because it has raised walls. Every time we change the height of the slope we will also re-measure the length of the run-off distance because as the slope is raised the end of it gets further away from the barrier.

Fair Test

To make it as fair a test as possible I will use the same marble as the other marbles may have a different mass which will give them more gravitational potential energy and more kinetic energy, making them faster than a lighter marble. Also I will use the same length slope as if it is a longer slope, although it won’t have more gravitational potential energy than a shorter slope, it will be in contact with the slope more which means it will be affected by friction more and slow down.

...read more.


The main thing that altered the accuracy of both experiments was friction, so, to improve my method I would try and remove friction as much as possible by using a lubricant on the slope. I would use the trolley and light gate again because with a few improvements to the method it would b a lot more accurate than using a run-off distance and stopwatch because it should remove a lot of human error. I think that there was a problem in the experiment I did with the light gate because of the accuracy of the length of the piece of card, so, this time, after I have cut the card I will measure its length again in case when it was cut out it got larger or smaller than 10cm. The length I re-measure it as is the length I will use for my calculations because this will make them more accurate. The other problem with the light gate was the method of keeping the trolley travelling in a straight line, we had to use two parallel rulers which the trolley kept hitting, adding friction and slowing it down. So as well as lubricating slope I would lubricate the rulers to reduce friction there. I would keep the rest of the apparatus the same.

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Investigation into Friction.

    that the results that were obtained from the smooth hardboard experiment were quite accurate. The point on Graph 2 that has the greatest percentage error is also the 13.28 N reading. The percentage error was worked out as follows: 6 - 4.75 = 1.25 1.25 � 6 = 0.21 0.21

  2. Investigate how the weight of an object affects the force required to overcome friction.

    Point 2: % ERROR = ? X * 100 X % ERROR = 0.06 * 100 1.66 % ERROR = 3.61 % (3s.f) Point 4: % ERROR = ? X * 100 X % ERROR = 0.16 * 100 2.84 % ERROR = 5.63 % (3s.f)

  1. What affects the acceleration of a trolley down a ramp?

    Another possibility may be an inaccuracy of measurements on our behalf. We may have made the ramp too high and that would increase the speed. Or on the other results the ramp might have been too low decreasing the speed of the trolley.

  2. Trolley Speed

    were printed there by a vibrating metal bar running on an electric current, which hits a piece of carbon paper 50 times every second. The analysis of a ticker tape diagram will also reveal if the object is moving with a constant velocity or accelerating.


    Improvements After carrying out my preliminary work I realised that I could have made the test more reliable. For my actual experiment I will use six different heights and repeat each experiment five times to get more accurate results. Also I will calculate the angle of the ramp at each stage to ensure my results are correct.

  2. My investigation is about how the number of paperclips added onto a paper spinner ...

    This is visible from the line of best fit but the results do not support this theory very strongly because the points are not close to the trendline. Revised Method The method was slightly changed to prevent the problem of the spinner being dropped from different heights as the two

  1. Investigation into factors affecting the speed of a car rolling down a ramp

    and the same mass acting downwards. Height of ramp (cm) Energy lost (j) Distance moved (m) Force of friction (N) 5 0.014 0.58 0.024 10 0.027 0.58 0.047 15 0.033 0.58 0.057 20 0.040 0.58 0.069 25 0.053 0.58 0.091 30 0.056 0.58 0.097 35 0.039 0.58 0.067 These results give the average force of friction to be 0.065 Newtons.

  2. Investigation is to see how changing the height of a ramp affects the stopping ...

    67.3 125.5 58 144 57.1 129 60.80 132.83 7 74.8 149.7 75.9 142 71.3 143 74.00 144.90 8 65.4 157 83.7 151.9 178.2 199.58 109.10 169.49 9 111.1 164.1 105.4 159.4 108.7 163.3 108.40 162.27 10 129 172.2 138.8 162.1 137.3 183.4 135.03 172.57 However this wasn't to be, overall

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work