• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12

Investigation to Determine how the Height of a slope Affects the Speed of an Object Travelling Down the Slope

Extracts from this document...

Introduction

Investigation to Determine how the Height of a slope Affects the Speed of an Object Travelling Down the Slope

Prediction

I predict that the higher the slope the faster the speed of the object travelling down the slope. This is because the higher the slope, the more gravitational potential energy an object has when it is at the top of the slope and as the object travels down the slope gravitational potential energy is being converted in kinetic energy so the more gravitational potential energy the object has at the top, the greater the kinetic energy at the bottom and the greater the kinetic energy the greater the speed.

g.p.e.=mgh                                           k.e.=½mv²

g.p.e. is gravitational potential energy    k.e. is kinetic energy

m is the mass of the object                      m is the mass of the object

g is the gravitational field strength           v is the velocity of the object

h is the height the object is at

These formulas show that gravitational potential energy is related to height and that kinetic energy is related to speed. Because of the laws of conservation of energy, energy is never lost, only converted to different forms, the gravitational potential energy at the top of the slope is roughly the same as the kinetic energy at the bottom although some energy is converted to heat because of friction. This allows me to work out a formula that links the speed or velocity of an object to the height it started at.

g.p.e.=k.e.                        sub in equations

mgh=½mv²                        divide by mass

gh=½v²                        multiply by 2

v²=2gh                        square root

v=√2gh                        sub in gravitational field strength of earth

v=√20hThis is the equation linking speed to height

...read more.

Middle

v=√20h

                                  =√(20*0.5)

                                  =√1000

=3.16m/s

45cm/0.45m                        v=√20h

                                  =√(20*0.45)

                                  =3.00m/s

40cm/0.4m                        v=√20h

                                  =√(20*0.4)

                                  =2.83m/s

35cm/0.35m                        v=√20h

                                  =√(20*0.35)

  =2.65m/s

30cm/0.3m                        v=√20h

                                  =√(20*0.3)

                                  =2.45m/s

25cm/0.25m                        v=√20h

                                  =√(20*0.25)

=2.24m/s

20cm/0.2m                        v=√20h

                                  =√(20*0.2)

                                  =2.00m/s

15cm/0.15m                        v=√20h

                                  =√(20*0.15)

                                  =1.73m/s

10cm/0.1m                        v=√20h

                                  =√(20*0.1)

                                  =1.41m/s

The speeds we record should be slightly lower due to friction

        To keep the experiment accurate we will use a barrier to help us to know when the marble has reached the end of the run-off distance and eliminate as much human error as possible. To keep the marble rolling in a straight line we will use a drainpipe cut in half because it has raised walls. Every time we change the height of the slope we will also re-measure the length of the run-off distance because as the slope is raised the end of it gets further away from the barrier.

Fair Test

To make it as fair a test as possible I will use the same marble as the other marbles may have a different mass which will give them more gravitational potential energy and more kinetic energy, making them faster than a lighter marble. Also I will use the same length slope as if it is a longer slope, although it won’t have more gravitational potential energy than a shorter slope, it will be in contact with the slope more which means it will be affected by friction more and slow down.

...read more.

Conclusion

The main thing that altered the accuracy of both experiments was friction, so, to improve my method I would try and remove friction as much as possible by using a lubricant on the slope. I would use the trolley and light gate again because with a few improvements to the method it would b a lot more accurate than using a run-off distance and stopwatch because it should remove a lot of human error. I think that there was a problem in the experiment I did with the light gate because of the accuracy of the length of the piece of card, so, this time, after I have cut the card I will measure its length again in case when it was cut out it got larger or smaller than 10cm. The length I re-measure it as is the length I will use for my calculations because this will make them more accurate. The other problem with the light gate was the method of keeping the trolley travelling in a straight line, we had to use two parallel rulers which the trolley kept hitting, adding friction and slowing it down. So as well as lubricating slope I would lubricate the rulers to reduce friction there. I would keep the rest of the apparatus the same.

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Trolley Speed

    We then timed (with a digital stopwatch) how long it took for the ticker timer to reach the ground. We then switched off the ticker - timer. Next we wrote the result onto a piece of paper using a pen.

  2. Investigation into Friction.

    Although the smooth hardboard experiment took more force to overcome friction overall than the rough hardboard experiment, the fact that the coefficient of static friction for the rough hardboard is greater than that for the smooth hardboard adds reliability to the experiment and our results.

  1. Investigation is to see how changing the height of a ramp affects the stopping ...

    I will draw up a simple plan to investigate how adding weights to a toy car affects its stopping distance. AIM The aim of this investigation is to see how adding different amount of weights on the toy car affects the stopping distance.

  2. To investigate how the angle of a slope affects the acceleration of a marble.

    Prediction: I predict that the steeper the slope the faster the acceleration. This is because the steeper the angle the higher the marble starts and so the more potential energy it has. More potential energy means that when it is released it will have more kinetic energy and so can accelerate quicker.

  1. INVESTIGATING HOW STEEPNESS AFFECTS SPEED

    Improvements After carrying out my preliminary work I realised that I could have made the test more reliable. For my actual experiment I will use six different heights and repeat each experiment five times to get more accurate results. Also I will calculate the angle of the ramp at each stage to ensure my results are correct.

  2. My investigation is about how the number of paperclips added onto a paper spinner ...

    It could not have been because of the wing span, material or weight because we used the same spinner for all the experiments and the weight is the independent variable so it has to change and I do not believe it was easy to make mistakes with adding the weight.

  1. The experiment consisted of recording the results of a small toy car being allowed ...

    This was expected because the car is obviously going to be more affected by gravity when it leaves the ramp and starts to freefall. The actual motion of the car is now quite easy to describe. By looking at the graphs we can see that while on the ramp (0 < t <2.2)

  2. An investigation into factors that effect the braking distance of a trolley

    The trolley has to be released from the same point on the wooden plank to keep the experiment a fair test. * The units of measurement used - If different measurements are used for each experiment then the overall conclusion will be biased.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work