• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Relative atomic Mass of Lithium

Extracts from this document...

Introduction

Determination of the relative atomic mass of Lithium Evaluation I was given a task in which I was had to investigate and determine the relative atomic mass of Lithium. I was given the opportunity to use two different methods of which I could use to get my final result. The practical takes a vast amount of concentration and there are a number of measurement errors that can occur while carrying out the practical. Problems that affected the measurement such as; the equipment being used, not being 100% accurate when measuring out the substances being used, which usually gave an outcome of the readings given being slightly higher or slightly lower than the amount needed. This is evident in the use of the pipette, which expands and contracts due to the temperature and surrounding, so to get what is seen as an accurate reading would be nearly impossible. This degree of uncertainty is referred to as the tolerance. The tolerance could be a problem when the measurements are carried forward to the calculations, for example; when calculating the number of moles of Lithium Hydroxide in the second method. ...read more.

Middle

Uncertainty (%) = Multiplied by 100 Measuring Cylinder Uncertainty (%) = Multiplied by 100 Burette Uncertainty (%) = Multiplied by 100 Balance Uncertainty (%) = Multiplied by 100 From my results it is clear that the important area of measurement source is the balance, this is due to the fact that it has the highest uncertainty. From my calculations I also saw that even though the tolerance of the measuring cylinder is greater to that of the pipette and the percentage uncertainty is lower which is due to the fact that the volume that has been measured in the measuring cylinder is larger than the pipette, meaning the measurement error produced by the pipette is more significant. There are two ways in which you can minimise the measurement errors; one being to measure a larger amount, but by doing this I may need to alter my method, which can be done by either using alternative equipment such as a larger burette or increased concentration of Lithium Hydroxide solution. Another way can be to attempt to use a piece of equipment with a lower tolerance value, but this is not always possible. ...read more.

Conclusion

To prevent this from happening I could have used an inert solvent to wash all the oil off the Lithium providing me with all the correct results. After carrying out and completing my experiment, and going through two methods in which to get the result of my task, I can see why it is essential to have more than one method, as one method will not show the mistakes and effectiveness another method will. I feel that the most effective method was method 2. This is because it was most effective in finding the relative atomic mass of lithium. I feel this is because the most inaccurate piece of equipment, which is the balance, was not included in this method which would have gave a better chance of getting accurate results. Another reason is that within this method the Burette was used which had the most accurate functions to get the most reliable results, which put this method at a steady advantage as the least accurate apparatus was excluded and the most accurate was included. ?? ?? ?? ?? Tino Chingwaru ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Aqueous Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Aqueous Chemistry essays

  1. How much Iron (II) in 100 grams of Spinach Oleracea?

    Ammonium Sulphate in 10cm3 pipette = 0.05 X 100 = 0.625 % 8 Iron (II) Ammonium Sulphate in 10cm3 pipette = 0.05 X 100 = 0.83 % 6 Iron (II) Amonium Sulphate in 10cm3 pipette = 0.05 X 100 = 1.25 % 4 Iron (II)

  2. Determination of the relative atomic mass of lithium.

    I will add 5 drops of phenolphthalein indicator to the solution in the flask. 5. I will titrate the solution with the hydrochloric acid and record the results. 6. I will repeat the titration twice more. Analysis -Experiment 1 I used 100cm3 of H2O, which reacted, with 0.09g of Lithium to produce 158 cm3 H2 gas.

  1. Determine the relative atomic mass of lithium.

    Like sodium hydroxide and potassium hydroxide. If inhalation of lithium hydroxide occurs, remove source of contamination or move victim to fresh air and seek medical attention. Lithium hydroxide can be very irritating to the skin. Solid lithium hydroxide or concentrated solutions may cause severe tissue damage.

  2. Determination of the relative atomic mass of Lithium

    of LiOH present in 100cm3 of the solution from Method One is 0.01544 mols. * To calculate the relative atomic mass of you have to divide the original mass of lithium (0.11 g) by the number of moles of LiOH present in 100cm3 of the solution (0.01544 mols).

  1. to determine the relative atomic mass of lithium. We will be doing this via ...

    required 14.80 cm3 of 0.100 mol dm-3. This value was obtained by using our three concordant results. Treatment of results: The chemical equation for this reaction is: LiOH(aq) + HCl(aq) --> LiCl(aq) + H2O(l) To find the Relative Atomic Mass of Lithium, we must first calculate the number of moles of HCl used in the titration.

  2. Determination of the Relative Atomic mass of Lithium

    of 1 : 1 and so we can use this to gain our second RAM for Lithium. To do this we simply use the equation Mr = Mass / Moles and so the equation would be: 0.0463 / 0.005475 = 8.46 or 8.50 and so from our second method I

  1. Investigation to determine the relative atomic mass of lithium

    The lithium was then placed in a pan balance once removing as much oil as possible. The measured mass of lithium was placed in a conical flask and the bung put in place to collect the H2 produced and so that no gas came out of the top.

  2. Determination of the relative atomic mass of lithium.

    So to help me do this I will use the triangle for this formula. m n Mr Now using this triangle I can get the equation that I need to calculate my result (the relative atomic mass). If I want to figure out the Mr, then what I do is look at the other letters.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work