• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Relative atomic Mass of Lithium

Extracts from this document...

Introduction

Determination of the relative atomic mass of Lithium Evaluation I was given a task in which I was had to investigate and determine the relative atomic mass of Lithium. I was given the opportunity to use two different methods of which I could use to get my final result. The practical takes a vast amount of concentration and there are a number of measurement errors that can occur while carrying out the practical. Problems that affected the measurement such as; the equipment being used, not being 100% accurate when measuring out the substances being used, which usually gave an outcome of the readings given being slightly higher or slightly lower than the amount needed. This is evident in the use of the pipette, which expands and contracts due to the temperature and surrounding, so to get what is seen as an accurate reading would be nearly impossible. This degree of uncertainty is referred to as the tolerance. The tolerance could be a problem when the measurements are carried forward to the calculations, for example; when calculating the number of moles of Lithium Hydroxide in the second method. ...read more.

Middle

Uncertainty (%) = Multiplied by 100 Measuring Cylinder Uncertainty (%) = Multiplied by 100 Burette Uncertainty (%) = Multiplied by 100 Balance Uncertainty (%) = Multiplied by 100 From my results it is clear that the important area of measurement source is the balance, this is due to the fact that it has the highest uncertainty. From my calculations I also saw that even though the tolerance of the measuring cylinder is greater to that of the pipette and the percentage uncertainty is lower which is due to the fact that the volume that has been measured in the measuring cylinder is larger than the pipette, meaning the measurement error produced by the pipette is more significant. There are two ways in which you can minimise the measurement errors; one being to measure a larger amount, but by doing this I may need to alter my method, which can be done by either using alternative equipment such as a larger burette or increased concentration of Lithium Hydroxide solution. Another way can be to attempt to use a piece of equipment with a lower tolerance value, but this is not always possible. ...read more.

Conclusion

To prevent this from happening I could have used an inert solvent to wash all the oil off the Lithium providing me with all the correct results. After carrying out and completing my experiment, and going through two methods in which to get the result of my task, I can see why it is essential to have more than one method, as one method will not show the mistakes and effectiveness another method will. I feel that the most effective method was method 2. This is because it was most effective in finding the relative atomic mass of lithium. I feel this is because the most inaccurate piece of equipment, which is the balance, was not included in this method which would have gave a better chance of getting accurate results. Another reason is that within this method the Burette was used which had the most accurate functions to get the most reliable results, which put this method at a steady advantage as the least accurate apparatus was excluded and the most accurate was included. ?? ?? ?? ?? Tino Chingwaru ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Aqueous Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Aqueous Chemistry essays

  1. How much Iron (II) in 100 grams of Spinach Oleracea?

    present in 100 grams of Spinach Oleracea, could be due to the fact that the Spinach Oleracea was boiled in distilled water. Experiment B 5Fe2+ + 5C2O42- + 3MnO4 + 24H+ 5Fe3+ + 10CO2 + 3Mn2+ + 12H2O The equation above shows that 3 moles of Potassium Manganate (VII) (aq)

  2. to determine the relative atomic mass of lithium. We will be doing this via ...

    the likely errors, I can state whether or not the readings were reliable. An analysis of the errors in experimental results indicates how reliable they are. It can also suggest which aspects of the experimental method could be altered to reduce the error in the final result.

  1. Determine the relative atomic mass of lithium.

    From that we can deduce the number of moles of lithium hydroxide used in the titration. To do this I have to work out the mole ratio of the lithium hydroxide and the hydrochloric acid. To get the mole ratio we would need to examine the formula of the reaction.

  2. Determination of the relative atomic mass of Lithium

    This means that the ratio between the two is 1 : 4 so I have to multiply 25cm3 by 4, 25cm3 X 4 = 100cm3 Therefore I have to multiply the number of moles of LiOH by 4 as well, 0.00386mols X 4 = 0.01544mols So the number of moles

  1. Determination of the relative atomic mass of lithium.

    Obviously this would alter the result which means it is an error, it is an unfair test and that my results are wrong. Each and every source of error affects the results by different amounts. For example one of the most damaging errors in my opinion has to the bung along with the delivery tube.

  2. Determination of the Relative Atomic mass of Lithium

    I have also gained the results of all my classmates and so I can use their data compared to mine, and I can also use this data to show how far away I / the class were from the actual RAM of Lithium.

  1. Investigation to determine the relative atomic mass of lithium

    The lithium was then placed in a pan balance once removing as much oil as possible. The measured mass of lithium was placed in a conical flask and the bung put in place to collect the H2 produced and so that no gas came out of the top.

  2. Determination of the relative atomic mass of lithium.

    relative atomic mass of lithium, I must first calculate the number of moles of hydrochloric acid used in the titration. This can be done by using the following equation: Concentration (M) = number of mole Volume (dm3) The volume of hydrochloric acid (dm3)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work