• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3
4. 4
4
5. 5
5

# The Physics of Baseball.

Extracts from this document...

Introduction

The Physics of Baseball

Physics is the science of matter and energy and of interactions between the two. Physics can also be defined as the branch of science which treats of the laws and properties of matter and the forces acting upon it; especially, that department of natural science which treats the causes (as gravitation, heat, light, magnetism, electricity, etc.) that modify the general properties of bodies, natural philosophy. The Physics of baseball can be looked at by examining the many different elements of the game, such as: the aerodynamics of the spinning baseball, overall hitting science, the dynamics of the baseball-bat collision, and the peculiar action of the knuckleball.

Over a hundred years ago, Sir Isaac Newton published three laws of motion. His laws provide explanations for observations about motion. We usually do not see these in our everyday life because other objects and forces of nature seem to interfere. Newton's laws apply to all sports in a variety of ways. It applies to baseball in many facets of the game; the flight of the ball, the curveball, the knuckleball, batting and throwing, and the ball-bat collision. Newton's first law of motion states that any moving object maintains its velocity unless a force is applied to it. Objects of a zero velocity or objects at rest remain at rest unless force is applied to them.

Middle

The most important pitch in baseball is the fastball. There are many different variations of the fastball (four-seam and split-finger fastball). The four-seam fastball or the rising fastball is thrown straight and hard with a lot of backspin. Your index and middle finger are positioned across two seams, so when thrown four seams rotate in the backspin. A good rising fastball thrown hard enough with enough backspin can rise four inches from the lowest point of trajectory to the catcher's mitt. On the other hand, the splitfinger is thrown with the fingers split apart, like a V, and directed along the seams of the ball. With this grip, the airflow sees only two seams, so the average surface is much smoother, and a greater air resistance is felt, resulting in a slightly slower pitch. The effect of splitting the fingers is to allow the ball to "slip" out between them and approach home plate with less backspin. This eliminates the "hop" of the rising fastball, allowing the ball to drop as much as 16 inches, and is the essence of the splitter.

One important difference between a fastball, a curveball, a slider, and a screwball is the direction in which the ball spins. (Other important factors are the speed of the pitch and rate of spin.) Generally, a ball thrown with a spin will curve in the same direction that the front of the ball (home plate side, when pitched) turns.

Conclusion

As you and I have found out, a great deal of information can be understood on the basis of the physics' principals. After looking at the physics for pitching and hitting, I understand how and why things happen in the game of baseball. I have found new and interesting facts that will be useful to me, as a pitcher, in my upcoming baseball season. At the bottom of this paragraph I have listed more attention-grabbing facts that I found fascinating.

Did You Know ?

*To hit a ball for maximum distance, the trajectory off the bat should have a 35-degree angle.

*An average head wind (10 miles per hour) can turn a 400-foot home run into a 370-foot out.

*A 400-foot home run will go about 6 feet farther for every inch reduction on the barometer.

*The collision of a ball on the bat lasts only about 1/100th of a second.

*A batted ball should be able to travel no farther than 545 feet (excluding meteorologically freaky conditions).

*There is no such thing (except in softball) as a rising fastball!

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related GCSE Forces and Motion essays

1. ## The Physics of Sailing

Without this crucial piece of knowledge, it would be impossible to start sailing. On the picture below, the wind is blowing straight down the lake. This concept may be difficult to grasp, but a clear way to think about it would be to imagine the wind as a gigantic fan blowing in a straight line.

==> Independent Variable: Size/Mass of ball bearing. ==> Control Variables: Material of ball bearing, length of string, angle at which it's dropped, same time I start the stopwatch. These are kept the same so that none of the other factors, except for the size and mass, are affecting the outcome of the results.

1. ## Investigating the Physics of Bunjee Jumping

The motion sensor was placed on a block under a tripod for equipment safety, and the block was utilised to ensure that there was no interference between the tripod and the sensor. A plastic container lid was secured with blu tac on the bottom of the masses to maximise the surface area and prevent other objects interfering with the sensor.

2. ## Investigating the amazingness of theBouncing Ball!

Gravitational and elastic forces) the sum of the kinetic and potential energies in constant ie KE + PE = a constant, however this constant is different between each bounce as some of the energy is lost as heat and /or sound so the constant decreases each time.

1. ## Mechanical Properties of a Meter Rule

When the rule was swinging, it sometimes rubbed the side of the table causing the rule to slow down. This will definitely affect my final results. 2. The nail used to go through the holes was not small enough and could have caused friction between the nail and the material causing it to slow down.

2. ## This investigation will be looking at what factors affect the performance of a squash ...

would expect the reaction to produce the same results over and over (providing that that specific temperature is not too high that the squash ball proceeds to melt). Conversely as the squash ball is cooled the height of bounce will decrease.

1. ## Prove that &amp;quot;Frictional Forces are Surface dependant&amp;quot;.

While the smoother the surface, the less the friction, and consequently, the less time is consumed. My Prediction: I predict that the marble shall prove a very good surface close to ice which will enable the block to shoot across it like a bullet fired from a gun, this is

2. ## This investigation is associated with the bounce of a squash ball. I will be ...

Brownian motion is the most direct visual evidence for the second hypotheses, where smoke particles are seen to move around randomly as they are struck by air molecules. The idea of a molecule that is of a dense spherical body of great elasticity and rigidity, like a steel ball bearing is useful in understanding the kinetic theory.

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to