• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

To investigate how changing the volume of water in a container affects its rate of its heat loss. The variable of this investigation is the volume of water which is put in the container.

Extracts from this document...

Introduction

Aim : To investigate how changing the volume of water in a container affects its rate of its heat loss. The variable of this investigation is the volume of water which is put in the container. What I already know: I already know that the larger the volume of water there is the less heat loss occurs. I can tell this from my previous pilot experiment where I investigated, if the volume of water in a beaker affects its rate of cooling. In this experiment my conclusion was the beaker with the larger volume has no more heat energy to give out compared to the beaker with the smaller volume. Prediction: I predict that the increase of water volume in the beaker will affect the rate of heat loss; this is because of my results of the pilot experiment which gave me an understanding of the variable in my Investigation. ...read more.

Middle

Take a reading from the thermometer every 30seconds, remembering to record results in a table. * Repeat this until all volumes of H2O has been investigated, but still using the same beaker for the next amount of water so it will be a fair test. * A few pointers of fair testing: 1. Remember to make sure that the thermometer is upright so you can take an accurate reading. 2. Make sure the Bulb of the thermometer is covered in the boiling water. 3. Make sure when investigating a different volume of water you get the thermometer back to the same starting temperatures as the previous volumes. * This is How I will display and record my results: Time Temperature 0 73 30 68 Analysis Trends and patterns: The 100ml line, the 150ml line and the 200ml line have approximately 4 degrees difference from 240seconds into the experiment .This is because convection is happening relatively at the same time for each one. ...read more.

Conclusion

Another way to say the same thing is that the rate of heat transfer through a substance is proportional to the difference in temperature across the substance. They are not odd results they do fit in with the pattern this is shown on my graph. I could improve my plan by maybe having two or three variables these would make my investigation more detailed and perciffic.I could check this trend/patern by making another graph with just a single line of a water volume to show at which point does convection start to fade at. The next experiment I could do to proive my varaible would be if I did the same experiment but actully covered the top of the beaker to prevent evapouration, to see which volume took the longest to cool down. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Green Plants as Organisms section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Green Plants as Organisms essays

  1. Marked by a teacher

    An investigation into the abundance of fresh water black fly larvae, Simuliidae, between pools ...

    4 star(s)

    Wellies or waders - These will be used so that you can access the centre of the stream. This is where the measurements should be taken each time as to regulate the results, doing so the results will be consistent and more accurate.

  2. Marked by a teacher

    An investigation into the relationship between heat loss and surface area to volume ratio

    3 star(s)

    The temperature of the surrounding air is another variable. I will control this by performing the experiment in one day. This is difficult but must be done. The reason for this is that no day has quite the same temperature and so will affect the cooling rate of the water.

  1. Photosynthesis Investigation

    Cover half of the 2 leaves with aluminum foil 2. De-starch the plant for 24 - 48 hours 3. Now give the plant some sunlight by taking it out from the dark area 4. Now take off the aluminum foil off the leaf 5.

  2. An Investigation into Water Loss from Plants.

    There are more stomata on the lower surface or the leaf so this is where most water is lost from as transpiration occurs. More are located on the bottom of the leaf as it is necessary to have them and the bottom surface is the most practical place.

  1. How the increase in clothes on a body prevents heat loss.

    Method * Fill a container with cold water and ice to reach desired temperature (5 C) * Mix boiling hot water and cold water in a beaker to reach body temperature (37 C) * Place a thermometer in the surrounding water and another in the test tube * Fill the first test tube (no layers)

  2. An investigation to investigate the effect of the diameter on the cooling rate of ...

    The water temperature lowered so rapidly that the starting temperature was 75C and we were initially going to start the experiment at 80C lowering to 70C and timing this 10C drop. We realised that this was not possible so we changed the starting temperature to 70C and we waited for it drop to 60C.

  1. I am investigating the rate at which heat energy is lost and heat transfer ...

    I will repeat the experiment several times by adding an additional layer of the material to my beaker each time. During the investigation, I will be recording the results from my experiments in order to analyse them on completion of the practical work.

  2. An Investigation into Species Diversity with distance along a Pingo.

    Biotic factors include competition, density and predation. It also includes and amount of waste produced by the populations, however this is not really applicable to vegetation. Abiotic factors include temperature, light intensity, topography, and edaphic factors (moisture content, pH, depth, organic content and compaction).

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work