• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Gold Metal Heights in High Jump.

Extracts from this document...

Introduction

 Hannah Krohn

Gold Metal Heights

Aim: The aim of this task is to consider the winning height for the men’s high jump in the Olympic games.

The graph below gives the Winning height (in centimeters) by the gold medalists at various Olympic games form 1932 to 1980 with the exception of 1940 and 1944.

Constraints to this graph: Since there were no Olympic games in 1940 and 1944 the slope is from 1936 to 1948 is not defined on the same domain as the other data points. This is limiting because the amount of data points vs. time is not consistent throughout the whole graph so it will be more difficult to create an accurate model.

The function that is modeled after the data points and graph is a linear graph seen below:

yimage00.png

The following variables on the next page are the variables that are used in the linear equation. To achieve these numbers plug in the data in the form of linear regression, where the height (y-value) is the dependent variable while the year (x-value) an explanatory value or independent.

...read more.

Middle

Using technology (Microsoft Word>charts) I was able to increase the order until the image01.png

 was extremely close to 1 in value, therefore the goodness of fit is as good as it could be for a model.

This is the model that occurred after trying to find the best fit. This equation had the closest value to r² out of all the order possibilities.

image08.png

image03.png

 0.99099

The lower r2 value for the linear regression indicates that the polynomial regression is a better fit to the data.

Here is the graph that shows that the polynomial better is a better fid for the data then the linear model.

Polynomial Model

Linear Model

image09.png

image10.png

image03.png

 0.99099

image05.png

image04.png

Estimating the winning heights of 1940 and 1944 would be done in the following way:

Look at the Polynomial Model since it has a better goodness of fit.

...read more.

Conclusion

The following table gives height for all the Olympic Games since 1896 to 2008

image16.png

image03.png

 0.97663

Since the original polynomial model changed with the additional data, it did not fit the datat well, but with the new data the r² is less than the original polynomial graph which had a r² of r² image03.png

 0.99099. Still better than the linear graph which had a r² image03.png

image17.png

Here is the data in a table to compare graphs

1st Polynomial Model

2nd Polynomial Model

Linear Model

image18.png

image19.png

image20.png

image21.png

image03.png

 0.99099

image22.png

image23.png

image24.png

image25.png

image03.png

 0.97663

image05.png

image04.png

The trend from 1896 to 2008 is relatively stable slope until 1952 where the slope increases in a (if it was a double derivative) concave down manner until 1996, where it levels off.

Modifications to the data would be to interpolate the data, which is the process one uses to determine a value on the line of best fit within the cluster of scatter plot data.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. A logistic model

    Also, as these values increase the population (according to this model) goes above the sustainable limit but then drops below the subsequent year so as to stabilize. There is no longer an asymptotic relationship (going from {5} to {9}) but instead a stabilizing relationship where the deviation from the sustainable limit decrease until remaining very close to the limit.

  2. Math Portfolio Type II Gold Medal heights

    As the values for x increase expression of log(x) increases as well. If log(x) increases furthermore, resulting in a vertical expansion, however if the graph is vertically compressed. A negative b causes a reflection along the x-Axis, even if b is now negative a vertical compression is found when and a vertical expansion occurs if .The parameter k determines

  1. High Jump Gold Medal 2012 maths investigation.

    According to software, the R2 = 0.8927, R= 0.94482802668 Subsequently, I decided to test with the Sine equation using Geogebra to find out a better line to fit with the data given. The software gave the equation of y= 217.9381 + 19.2462 sin (0.054x- 1.758).

  2. Modelling Probabilities in Games of Tennis

    Different ways in which a game might be played. The first thing we must do if we want to know all the different ways a game can be played is find the domain of Y, the number of points played. Because a player must score at least 4 points and maintain a difference of at least 2 points to

  1. Creating a logistic model

    This is an S-shaped curve. Next we should consider how a different initial growth rate will affect the graph. For example, it may be the case that biologists speculate that the initial growth rate of fish may vary considerably. I will now investigate functions models for un+1 with growth rates r = 2, 2.3, 2.5.

  2. IB Math Methods SL: Internal Assessment on Gold Medal Heights

    This is an example of where regression is a very imprecise art; if you take a look at the quintic graph (see Appendix, Figure 4) the values increase exponentially up to 2008 the record then being 600 centimeters; then sharply drop exponentially; 2016 being a passing point when the values are dropping exponentially.

  1. Mathematic SL IA -Gold medal height (scored 16 out of 20)

    Let?s consider linear function; Figure 6 the graph of a linear equation, y=x The linear equation has a line graph. The general form of linear equation is y=ax+b. In the equation, ?a? is a constant which is called gradient. Linear equation can have both upward and downward sloping graphs when

  2. Modelling Probabilities on games of tennis

    = np = 10 ?6.667 Variance = 2 = np (1-p) = (1 - ) = Therefore, Standard Deviation = = 1.4907 It is necessary to keep in mind the assumptions we have made over here. In the real game, there are many factors that influence the winning of an

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work