• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Rolling objects down a ramp Physics LAB

Extracts from this document...

Introduction

Objects Down a Ramp

(Physics 3U Summative)

Friday December 23rd, 2011

Physics 3U                                                                               Mr. Meldrum

Objective: The purpose of this experiment is to analyze the forces, dynamics and energy of certain objects.

Apparatus:                Wooden ramp                Pencil Case

                        Newton scale                Wooden block

                        Digital scale                Sandpaper (60 gritt)

                        Timer                        Meter tape

                        Tape holder

Method:

Measure the ramp

Let go of objects from specified length (90, 75, 50 inches)

Time the time it takes from letting go to hitting the wall (repeat 5 -8 times)

Repeat until all 3 objects have been timed at all 3 distances

Observations:

image71.jpg

Calculations

Pencil Case

Pencil case: 400.1g

Static friction 1.5 N

Kinetic friction: 1.2 N

60 inches:  image00.png

         = 0.73 s

75 inches:  image01.png

                 = 0.93 s

90 inches: image02.png

                 = 1.10 s

Tape Holder

Tape holder: 611.7g

Static friction: 3.75 N

Kinetic friction 3.5 N

60 inches:  image03.png

                = 1.63 s

75 inches:  image04.png

                 = 1.87 s

90 inches:  image05.png

         = 2.24 s

Wooden Block (with Sandpaper at the bottom)

Wooden block: 293.9g

Static friction: 2.3 N

Kinetic friction 2.3 N

60 inches:  image06.png

         = 1.37 s

75 inches:  image07.png

                 = 1.67 s

90 inches:  image08.png

 = 1.76 s

Pencil Case

It took approximately 0.

...read more.

Middle

image29.png

 (9.8) (0.5)        

image28.png

image30.png

 J

5.958-1.96 = 3.998

3.998 J - 3.8 J = 0.198 J

0.198 J

Therefore approximately 0.198 Joules have been lost

Tape Holder

It took approximately 1.87 seconds to travel 75 inches.

image09.png

image10.png

image31.png

image32.png

image33.png

 (102 cm/s)                                image34.png

)

Therefore velocity is 0.102 m/s and acceleration is 0.055 image16.png

611.7 g= 6N (weight)

image17.png

image18.png

image35.png

image36.png

image37.png

image38.png

Therefore force of static friction is approximately 22.5 N and the force of friction is approximately 21 N

Wooden Block with Sandpaper base

It took approximately 1.67 seconds to travel 75 inches.

image09.png

image10.png

image39.png

image40.png

image41.png

 (114 cm/s)                                        a= 0.068m/s  (image42.png

)

Therefore velocity is 0.114 m/s and acceleration is 0.068 image16.png

400.1 g = 3.22 N (weight)

image17.png

image18.png

image43.png

image44.png

image45.png

image46.png

Therefore force of static friction is approximately 6.624 N and the force of friction is approximately 6.624 N

Sources of Error

1.

The wooden ramp was slightly bent at the top due to the force leaning on the table. After the table (going downwards), the wood seemed relatively straight due to the wall supporting it. The top of the ramp did not have any support therefore making a slight bend in the wood above the table mark.

Assuming the bend was curved downwards making the time slower, the time took 0.07 seconds longer.

To fix that we would add 0.07 to each time

Tape holder

It took approximately 1.80 seconds to travel 75 inches.

image09.png

image10.png

image47.png

image48.png

image49.png

 (106 cm/s)                                image50.png

)

...read more.

Conclusion

Calculated Industries Prexiso X2 3350 Laser Distance Measuring Tool) it would be much faster to calculate distance and it would be much more accurate (tenths of a millimeter). This device is only $24.99 making it affordable for us to have. Instead of using a wooden ramp we could have put a layer of steel on top of the wood to make the surface almost perfectly straight making the whole surface have a constant coefficient of friction. To maximize accuracy of the time, we could have attached small mini wireless microphone to the object and then we could have took the audio file to a computer and find out exactly how long it took from start to end.

Conclusion

To conclude this lab, the velocity of pencil case could have been from 0.197 to 0.210m/s. Tape holder could have been from 0.098 m/s to 1.06m/s. Wooden block could have been 0.110 to 0.118m/s. Acceleration for the pencil case can be from 0.20image16.png

 to 0.23image16.png

. For the Tape holder it can be from 0.053image16.png

 to 0.57image70.png

 For the wooden block it can be from 0.067image16.png

 to 0.069image16.png

.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Physics essays

  1. Aim: ...

    By finding the momentum of each ball before and after the collision, and then the vector sum of these, we can see that the momentum and kinetic energy are unchanged by a collision between the two. The differences in initial and final kinetic results could have happened for a couple of valid reasons.

  2. THermal Physics Lab

    For this a stopwatch should be used. The materials that would be required for the experiment is 1- Coleman cooler, 1- thermometer, 2 - plastic troughs, 1 - stopwatch, 500 ml - hot water and hot milk with same temperature 1 - microwave Procedure: > Set the apparatus as shown

  1. Fluid Dynamics

    One can use the Reynolds number, Re, a dimensionless value, to determine the nature of the flow (equation 4). It has been determined that Reynolds numbers of over 2000 indicate turbulent flow, while lower numbers signify laminar flow: (4) The viscosity5 of a fluid is the dominant factor in assessing the drag of a fluid.

  2. IB Physics Lab - Resistance

    X 100 * So ((69.8K? - 67.7K?) / (69.7K?)) X 100 = 0.14% Error Analysis * In this type of experiment, human error is unlikely, but still possible. The only reason that the experimental data wasn't exactly matched with the theoretical data would be because each resistor has a tolerance.

  1. Research question: Part A : What is the static friction coefficient of ...

    Horizontal length, cm Coefficient, Wood / wood 31.4 69.2 0.454 Wood / sand paper 14.2 18.1 0.785 Wood / glass 5.7 18.1 0.315 Uncertainty; e.g Surfaces Coefficient, Wood / wood 0.454 Wood / sand paper 0.785 Wood / glass 0.315 Part B; F = ma mg sin - = ma

  2. HL Physics Revision Notes

    Additional: Ways to record the motion of velocity/acceleration: light gate, strobe photography, ticker timer. 2.2 Forces and Dynamics: Weight = mg Forces include: gravitational force, friction, tension, the normal force, etc In a free-body diagram only one object is chosen and all the forces and shown and labelled.

  1. How does the sinkage depth of a tyre affect its rolling resistance ?

    air pressure in my cycle in order to reduce the sinkage depth. This impromptu decision helped in reducing the force that was required to move the cycle through the sand. The anecdote stated above was my premier inspiration towards my focus in my extended essay.

  2. Rocket Physics Lab

    Secure the meter stick and launcher with the plastic bottle section placed parallel to the ground. Secure tape measure from directly below the top of the launcher and spread it out straight with respect to the launcher. Measure twenty centimetres away from the plastic bottle and place a marking.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work