• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Science Research Project - The Forces in Avalanches

Extracts from this document...



Kateřina Čechmánková

Ms. Johnson

Physics, 10A

6 January 2009

Avalanche force

Section 1. Opinion of the Problem

     I choose to study the force during avalanches. I think it is interesting to study this because avalanches are a common problem in the mountains where many people dye because of it. This topic is not really known by people who do not study it. As you all known, avalanche is an abrupt and rapid flow of snow, often mixed with air and water. The reason why avalanches occur is because the snow can not stand the weight of the snowpack starts falling down the mountain side. While it accelerates, several forces start forming. The driving force is always bigger than the resisting forces. This topic will be a challenge for me due to the fact that there is not so much information on it. Many scientific books about this kind of problem have been written due to its terrible harm. Eventhough the study of avalanches is usually considered as a geography topic, physics is closelly linked with this as well. We set this type of problem into the „dynamics“ section of physics.

...read more.


     Next, I will tell you something about the resisting forces on their own. Talking about the resisting forces, there are five important factors contributing to frictional resistance which are:

R1: Sliding friction between the avalanche and the underlying snow or ground.

R2: Internal dynamic shear resistance due to collisions and momentum exchange between particles and blocks of snow.

R3: Turbulent friction within the snow/air suspension.

R4: Shear between the avalanche and the surrounding air.

R5: Fluid-dynamic drag at the front of the avalanche.

To find out acceleration on an avalanche, we have to know these resisting forces. The formula for this is listed in the documentation. The importance of the individual resisting forces varies within the avalanche and depends on the type of avalanching snow.

     Lastly, I will teach you somethings about avalanche impact. Avalanches can produce very large dynamic forces on objects. High velocity, low density, dry snow avalanches may flow over or around objects. This produces a fluid-dynamic stagnation pressure which is calculated by P = 1/2 pV2. Here P is pressure, p is the avalanche density and V is avalanche velocity.

...read more.


n class="c5 c15 c11">Section 5. Documentation

The driving force(F) and the resisting forces(R) act on a moving avalanche to determine its acceleration and maximum velocity.image00.png

Parts of an avalanche path


Formula for counting the acceleration of an avalanche


Hard slab avalanche flow


Slow slab avalanche flow


Impact of a dry snow or powder avalanche may produce
both drag and lift forces on an object.


Impact of a dense, wet snow avalanche.image06.png

Works Cited

Leaf, Charles. "references." avalanche dynamics. 1998-2001. WestWide Avalanche Network. 14 Jan 2009 <http://www.avalanche.org/~moonstone/zoning/avalanche%20dynamics.htm>.

Mers, Arthur. "avalanche dynamics." avalanche dynamics. 1976. Guidelines and methods for detailed snow avalanche hazard investigations. 14 Jan 2009 <http://www.avalanche.org/~moonstone/zoning/avalanche%20dynamics.htm>.

Voellmy, A.. "avalanche dynamics." avalanche dynamics. 1955. Uber die Zerstorungskraft von Lawinen. Schweiz. Bauzeitung. 14 Jan 2009 <http://www.avalanche.org/~moonstone/zoning/avalanche%20dynamics.htm>.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Physics essays

  1. Investigate the Size of Craters in Sand Due to Dropped Object.

    Actually, what we can say about this experiment is the result that we obtained is tremendously precise. This is based on the graph that we sketched. We got such a precise graph because all the point was fit into the straight line graph.

  2. Centripetal Force

    force: Standard deviation: So, the centripetal force of mass 50 g is: Force of gravity with mass 50 g: Table 4.6 Comparison of centripetal force and force of gravity Mass (kg) Centripetal Force Fc (N) Gravitational Force Fg (N) ?F Percentage error 10 0.4127976�0.0359655 0.098 0.314798 76.259552 20 0.4267571�0.0730388 0.196

  1. The purpose of this lab is to examine impact craters. Impact craters occur when ...

    Additionally the measurements were taken with the metal caliper as the diameter of the crater with the impressions made on the sand, which had been set to dry for 24 hours. Results: Raw Data Table Below are the tables with data from each of the five different heights from the three different sandboxes.

  2. Telescopes - science research project.

    An optical Telescope as Large Binocular Telescope (LBT) is used in astronomy and is positioned at Mount Graham in the pinaleno Mountains of southeastern Arizona and is fragment of the International observatory of Mount Graham. LBT stands as the one of the most advanced telescope of world, having two 8.4m broad glasses that give the similar light focusing capability as 11.8m broad singular round telescope[6].

  1. Analyzing Uniform Circular Motion

    8.19/10 T = 0.819 s The same process was utilised to figure out the period for one oscillation for each other independent variable. Controlled Variables: Hanging mass = 0.03237�0.00001 kg Spinning mass = 0.01353�0.00001 kg (Note: These masses were also measured in grams; however converting it to SI units is more productive.)

  2. Aim: ...

    = 7.3 gm/s Total Kinetic Energy = .0028 J Results for Trail 3, In this case, the incident ball hit the target ball at an angle (65�), giving the following results For incident ball (6.8 grams): s = 0.30 meters t = 0.41 seconds v = 0.73 m/s P =

  1. HL Physics Revision Notes

    Reflection (fixed end): when a pulse of a string attached to a support hits the wall it is attached to, it is reflected?inverted with the same shape (undergone a 180 ? degree change in phase). Reflection (free end): like above, the pulse comes back but without being inverted Snells Law

  2. Energy Exploration Project

    solar cells to convert sunlight directly into electricity. With Photovoltaics, photons in sunlight are absorbed by semiconductors like silicon. Electrons get knocked loose from their atoms allowing them to flow through the material and produce electricity. This process takes the electric energy from the sunlight and converts in into usable direct current (DC)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work