• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Elastic Band Investigation.

Extracts from this document...

Introduction

Elastic Band Investigation The things that might affect this are: - Downward force applied to the elastic band - Length of elastic band - Thickness of band - Band material My prediction for this experiment is that I think that the more force you exert on the elastic band then the longer its length will be. This is because extension is proportional to load and so if the load increases so does the extension and so does the stretching distance. Shown on a graph, I think it will look like this: This shows that as the force (f) gets bigger, then the extension (x) will also get bigger. Higher values represent stronger, less stretchy bands, and lower values represent weaker, easier to stretch bands. I have done some research and found that this experiment is based on 'Hooke's Law' Hooke's law is when you stretch or compress an object and they change shape, for some elastic materials a steady change in force produces a steady change in shape. Another way of saying this is that if you apply a force to a spring, the spring will stretch by some length. Double the force, double the stretch, and so on. ...read more.

Middle

We will carry out the experiment 3 times, the first and second being us measuring the length as the weights are put on, and the third us measuring the length as the weights are being taken off to see if there is a difference in the length when it is taken off and when it is being put on. We will also take an average. However, I will not use the third experiment in my average. As far as safety precautions go, we will wear safety goggles, just in case the elastic band does snap, which will be highly unlikely, due to the first experiment we did to find out the elastic limit. But, we will also use something to hold the clamp in place, so it doesn't fall over. Experiment diagram The weights we had were 10N each, so I have started off with 10N and finished with 200N. Results table Force in N Test 1 Test 2 Test 3 Average 0 10 9 9.8 9.5 10 11.5 9.6 11.5 10.55 20 14.4 11 13.6 12.7 30 20.3 12 16.1 16.15 40 25 13.8 20 19.4 50 29.7 16 22 22.85 60 31.8 18.2 25.7 25 70 34.5 20.3 29.3 27.4 80 36 22 34.9 29 90 37.5 23.8 36.5 30.65 100 38.5 ...read more.

Conclusion

However, it appeared that as the extension increased the difference between the two results decreased slightly. The reason could be that the elastic band was nearing its limit of proportionality. This shows that my results for this experiment support Hooke's Law, which proves the prediction to be correct. The first experiment to find the elastic limit for the elastic band helped with the safety precautions. There was very little danger that the elastic band would snap if the elastic limit was not reached. In conclusion the results supported each other as well as the laws they were based on. If the experiment were to be repeated, then I would make some changes in the way it was carried it out to reduce experimental error. * In both tests it would have been preferable to hold the ruler in place by using a boss clamp instead of holding it. This would ensure more accurate results by removing human error. * I would have used a pointer on the elastic band that would also help me gather the information more accurately, this would help by pointing to the measurement instead of us having to bend down and look. By undertaking the experiment again I could ensure that the results were accurate which would mean that the averages were more reliable. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Waves & Cosmology section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Waves & Cosmology essays

  1. Hooke's Law.

    Retort Stands (x 2) 2. Boss and Clamps (x 2) 3. Metre Rule 4. Spring (length: 50 mm) 5. Newton Weights (x 15 approximately) Other items I shall need are three pairs of goggles. SAFETY I must consider my safety when working in the laboratory.

  2. In this experiment, I am going to find out the relationship between Force and ...

    to a point known as the elastic limit were it was seen to curve. An increase in load did result to an increase in extension as seen in both graphs until the yield point. The stiffness of my stretchy sweet is 9.27 X 10-1Nm-1.

  1. An Experiment To Examine the Effect of Springs In Parallel

    I think there could have been improvements. My table shows all the results and then the average results. By looking and doing calculations, the greatest variation of any measurement was 1.00cm at '2 springs' in parallel. As I went down the table of greatest variation, the variation decreases.

  2. Stretching Springs/Hookes Law.

    Hooke's most important contributions include the correct formulation of the theory of elasticity, which states that an elastic body stretches in proportion to the force that acts upon it; and analysis of the nature of combustion. He was the first to use the balance spring for the regulation of watches, and he devised improvements in pendulum clocks.

  1. An Investigation into the Factors, which affect the Voltage Output of a Solar Cell

    * I recorded the voltage every time I covered up the solar cell. Equipment List Safety Precautions 1 Solar Cell Do not set the voltage to high on the power pack Voltmeter Do not handle apparatus with wet hands Power Pack Don't unplug apparatus while socket is switched on Ray

  2. Investigate the effects of how springs and elastic bands stretch when weights are hung ...

    clamp so I could measure the distance that the spring had gone down and stretched. Obviously the more weight we put on the further the spring went down. I placed the spring on the clamp and measured the starting point of the spring on the ruler and marked it with a removable pen.

  1. Investigation to show how Elastic Bands Behave Under Load.

    (From World of Physics by John Avison.) On no point of the graph does the rubber obey Hooke's Law. I think this could be true for the elastic bands I will investigate. Safety * I will wear goggles to make sure no injury will occur to the eyes.

  2. To investigate the stretching of an elastic band when it has some load on ...

    The elastic limit nearly coincides with the proportional limit for some elastic materials. Prediction: I predict that the results graph for extension versus load is a straight line with a curve to it at the top when it has reached the elastic limit.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work