• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11

Serving Newton

Extracts from this document...




At the start of the year's University Physics 1 degree course, the Physics Professor looked at the motley crew filling the lecture theatre. He knew some students were destined to survive, while others would drop-out. In a rather callous way, the professor wrote-off the previous twelve years of the students' scientific education before introducing the course. Writing on the board just four symbols, he continued saying "The single most important equation in the Universe is,"

" F = m a "

The experience could be likened to watching the rector at church, singing the praises of the most exalted one. "From this equation" he said, "everything else, all other forces are derived, forces including motion, gravity, electrostatics and magnetism. This can be experimentally proven over-and-over again as a Law of Nature, as a Universal truth. " But this was no rector, this was the bishop, the professor himself outlining Newton's laws of motion, showing the magic relationships that exist in the sciences. The Universe seemed to make sense at that moment, but then his reverent attitude turned. He introduced into this overview scheme of things, three body gravitational systems. At this point, he stated that Newton's laws failed, for "this is where Einstein's approximations come into their own, for only they can accurately predict and solve the forces that exist between three or more bodies in the Universe."

Something appeared to be very incorrect; for this did not ring true. It seemed impossible that a law of Nature, a known Universal Truth, could be wrong? The professor was expressing the common cosmological opinion that Newton's laws of gravity are deeply troubled, if not wrong, yet he found it amusing that cosmologists could not suggest any mechanism to explain gravity or to improve gravitational theory.

...read more.


Due to the seek times and storage needed in major mainframe computer installations, removable disk platters were used. Some of these drives spun the 8 plate 30cm diameter platters at speeds above 5,000 rpm ( 83.3 rps producing a tip speed of some 178.53 m/s or 282 Km/h). The head crash could cut the disk from the platter in a second. Once airborne, the disk would smash through the protective housing, the casing, flying-off across the computer room to bury itself edge-wise into any distant object, with such an impact force, chemical reactions take place between the disk and the object it entered. These disks do not strike objects, they enter them and form chemical bonds.

As the gyroscope spins, it passes through periods of absolute stability, followed by periods of instability. As the disk slows, the precession becomes more and more pronounced. Eventually as the rotation fails, the force of gravity grounds the gyroscope. This effect indicates an atomic and molecular resonance in the gyroscope, where the centrifugal and centripetal forces are continually compensating. A magnetic shock travels along the axis and rebounds, but in the mean time, the disk has rotated. If the reflection point is immediately below or 180 degrees out of phase, stability exists in the gyroscope, however, as the reflection point drifts out of phase, the system's instability increases as the axis is knocked from the vertical position and then precession follows the rotation. The precession may cause the object to violently wobble when the phase shift is 90 degrees. This is a molecular resonance effect and is different between different materials. This is the G-wave, an effect caused by matter's elasticity.

...read more.


The sagitta and the radius of curvature are selected in the mathematical limits, leaving the lens-radius to set the actual calculation limits. The limits apply in two directions, the vertical depth and perpendicular radius of the latitude disk, to rationalise the three dimensional sphere by rotating the structure through addition of each ring or cylinder. As the triple integration enters the picture, one must use the computer program (Appendix 8) to reach a bottom line figure, that is, providing the computer can add. Just put numbers into it and let the computer do the hard work. Appendix 7 explains how to use Appendix 8. The Sagitta or depth of a circular

arc is given as S = R - image08.png( R2 - r2 )

where R is the Radius of Curvature and r is the radius of the disk or sample size.

In this case, the Basic language statement would be

L# = R# - ( R# - SQR (( R# ^2 ) - ( LAT# ^2 )))

where the depth "L#" of the arc at radius LAT# for the particular radius of curvature R#.

Rotational energy does not work from the centre of mass, rather it operates in two separate directions, one perpendicular to the axis of rotation at a height on the axis of rotation parallel to the primary body's equatorial plane, while the other is away from the axis at that radial distance, hence, the key parameters in determining the total rotational energy are the radial distance, the distribution of mass and the revolutions per second. Owing to relativity, the forces experienced on the surface are different as one needs to examine the centripetal forces in the structure. To further the understanding of rotational energy and its relativity to a system, means examining the behaviour of mindless matter in systems. Perhaps the best place to continue this quest is to view the worst situation possible, absolutely mindless destructive matter in the rotating Universe.

-------end chapter 14 -----

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Mechanics & Radioactivity section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Mechanics & Radioactivity essays

  1. Experiment to find the acceleration due to gravity using free fall.

    The atoms within the ball could well have been ordered to make the ball itself be attracted to the electromagnet after the switch was thrown. Even if current was no longer flowing through the wires around the core, a weak magnetic field may have been apparent in the ball causing

  2. Determination of the acceleration due to gravity (g) by free fall.

    than to reduce the fractional error in the measurement of h (height), especially as this information was put into the graph to calculate the gradient. Also human error can be a major factor in distorting my results in this experiment.

  1. Investigating the factors affecting tensile strength of human hair.

    For example if all fifteen black hairs were taken from the same person, it could just mean that that person had thicker hair than normal thickness of black hair. This would make my results invalid. I will take all hairs from the same age group (my age group, 17-18), to

  2. Objectives: To determine the center of gravity of a body of irregular shapes

    The second method is that we can repeat the process of marking the intersection point for several times until we get the best result. Secondly, it is difficult for us to decide the moment that the board is at rest.

  1. Young's Modulus of Nylon

    use to make sure it lies on the zero value when fully closed. * Double-check all readings to be taken from the micrometer and ruler, and double-check the calculations for area on calculator. * Nylon should not be interfered with once set-up on the clamp, in order to reduce added

  2. Measure the earth's gravitational field strength.

    Blue-tack- this was used to hold the picket fence securely to the top of the trolley, this is so that when a trolley does a run, the picket fence will pass through the light gate and therefore measure the velocity and time of the trolley.

  1. Carry out an experiment of simple harmonic motion using a simple pendulum and determine ...

    obtained for the acceleration of the simple pendulum due to gravity is 9.8ms(�, which is good. This shows that the experiment was accurate and verifies the equation for the time period. The value is slightly less than the accepted value of 9.81ms(� for the acceleration of gravity which could be

  2. Explain how excessive exposure to radiation can cause harm.

    the body and storing radioactive materials as far from workers as possible. The decrease in exposure from a point source of x or gamma radiation can be calculated by using the inverse square law. This law states that the amount of radiation at a given distance from a point source varies inversely with the square of the distance.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work