• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

To investigate the relationship between the power consumed by a torch bulb and the resistance, by measuring the potential difference across the bulb and its current.

Extracts from this document...

Introduction

Name: Fawwaaz Hosein

Group Members: Eric Mui and Idris Khan

Experiment 2: Electrical Power

Date: 26th February 2010

Aim: To investigate the relationship between the power consumed by a torch bulb and the resistance, by measuring the potential difference across the bulb and its current.

Equipment:

  • Four (1.5V) batteries
  • Two multi-meters
  • Connecting wires
  • Rheostat
  • Switch
  • Torch bulb

Method

  • The equipment is set up as shown in the diagram (1.0) below.
  • One of multi-meters is used as an ammeter and is connected in series so as to measure the current (I) of the circuit and the other is used as a voltmeter connected in parallel with the bulb, to acquire the potential difference (V) across the bulb in question. The positive terminals of the multi-meters are connected so that they are facing the positive terminal of the batteries. The voltmeter is set to read volts and ammeter to read micro-amps.
  • The variable resistor (Rheostat) is adjusted until the current (I) observed on the ammeter is at its minimum value.
  • Readings are taken from each multi-meter. The ammeter gives the current (I) whilst the voltmeter gives the p.d across the bulb in question.
  • The variable resistor is adjusted so that the current (I) increases while the resistance (R) decreases. The readings of twelve (12) other points of equally spaced intervals are then taken so as to have thirteen (13) points in total. The values of V and I from the respective multi-meters are recorded and tabulated  
  • The relationship between the Power (P) and resistance(R), is determined using the equation stated below:

image00.png

                                                        P=kRn

                             Where P = IV, R = image02.png and k and n are constants.

  • In order to obtain a straight line graph to graphically represent the relationship between P and R, the following equation is derived:
...read more.

Middle

0.09

57.2

1.0

4.69

0.09

57.7

1.0

4.75

0.10

58.0

1.0

4.81

0.10

58.4

1.0

4.86

0.10

58.8

1.0

4.93

0.10

59.2

1.0

4.96

0.10

59.5

1.0

P% = V% + I% = ± 4%

R% = V% + I% = ± 4%

P (W)

P (W)

R (Ω)

R (Ω)

lnP

lnR

0.237

0.009

78.4

3

-1.44

4.36

0.240

0.010

78.6

3

-1.43

4.36

0.243

0.010

78.9

3

-1.41

4.37

0.247

0.010

79.4

3

...read more.

Conclusion

Conclusion:

From the experiment we concluded the following:

  • P=1.04 x 10-7  × R3.3559
  • n = 3.3559  
  • k = 1.04 x 10-7  WΩ−3.3559

To reduce the uncertainties of power and resistance, the uncertainties of voltage and current must first be reduces as they are linked. To achieve this V should have been measured more than twice at each current level. The number of current and voltage values should also be increased so as to have more values to plot on the graph. The power law in particular the formula used applies to this experiment, as lnP increases, lnR increases linearly; P is increased by the product of k and R to the power of n. This is also shown by the strong positive correlation of the graph that further shows that the power law is applied as when lnR increases, lnP increases proportionally or linearly.

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Circuits - To prove the equation: Resistance (Ω) = Potential Difference Current.

    � (2.55 - 1) (0.06 � 1.55) 0.0387 Bulb 3 Gradient (y2 - y1) � (x2 - x1) (0.155 - 0.15) � (2.0 - 1.675) (0.005 - 0.325) -0.3200 Analysis From looking at my results and calculating the gradient for the graph I am able to see that as the number of bulbs in my circuit increased

  2. Find The Internal Resistance Of A Power Supply

    Plan of Action: Day Plan Of Action Friday periods 2&3 Collect and process preliminary data Friday periods 1&3 Modify equipment and collect data Friday periods 2&3 Collect and process data Preliminary Experiment: In my preliminary experiment I used the apparatus as shown on the next page in figure 4.

  1. Coursework To Find The Internal Resistance Of A PowerSupply

    I feel that three repeats will be adequate to give me reliable results. I am going to use eight resistance settings to give me a fairly large range for current. This will give me more point to plot on my graph of current against voltage and therefore a more accurate

  2. To investigate the relationship between current and potential difference (ohm’s law).

    Voltage measures the amount of energy used in getting each coulomb of charge through the wire. The units of volts are the same as joules per coulomb.

  1. To Investigate How the Resistance of the Light Dependent Resistor Depends On the Current ...

    Changing the current of the light bulb can affect the power, therefore it will affect the brightness of the light bulb. In order to change the current, I will use a variable resistance to change the sum of the resistance in the circuit, because the current is equal voltage divided by resistance.

  2. The Resolving Power Of The Eye

    A white light bulb was used in full light, daylight. This proved to be unrealistic as a tool for calculating the resolving power of the eye as the pupil was small and the distance from the eye to the apertures is short as in full light it is hard to resolve two holes of white light in white paper.

  1. The aim of the experiment is to verify the maximum power theorem and investigate ...

    in horizontal position as much as possible, we also can measure the degree of the direction of the applied force to the horizontal by using the projector. Besides, the roughness of the sand paper is not the same over the whole sand paper.

  2. Observe and record the brightness, voltage difference (the potential difference between two points in ...

    However, it is not possible that there could be more difference than the actual amount of volts put into the circuit. This leads to the conclusion that there was clearly a source of error. Going from one point of a wire to another without crossing a light bulb, the difference

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work