• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Number Grids.

Extracts from this document...

Introduction

Number Grids

12

13

14

22

23

24

25

26

27

We were asked to investigate the difference in the products of sets of numbers on a number grid. These products are obtained by multiplying the top left number in a square box, by the bottom right number in the box. Then you find the product of the top right and bottom left and find the difference between the two products.

12 x 23 = 276

13 x 22 = 286

Difference (D) = 10

I will try this with other 2 x 2 boxes on the grid.

27

28

29

37

38

39

47

48

49

43

44

45

53

54

55

63

64

65

                43 x 54 = 2322                        27 x 38 = 1926

                44 x 53 = 2332                        28 x 37 = 1936

                      D            = 10                              D    = 10

On a 2 x 2 square box, the difference is always 10.

n

n+1

n+2

n+10

n+11

n+12

n+20

n+21

n+22

                                        n x (n+11) = n2 +11n

                                        (n+1)(n+10)= n2 +11n +10

image00.pngimage01.png

These numbers produce the difference

I will now try this with squares larger than 2 x 2.

3

4

5

13

14

15

23

24

25

27

28

29

37

38

39

47

48

49

                        3 x 25 = 75                             27 x 49 = 1323

                        5 x 23 = 115                             29 x 47 = 1363

                             D   =  40                                 D     = 40

n

n+1

n+2

n+10

n+11

n+12

n+20

n+21

n+22

                                     n(n+22) = n2 + 22n

                                     (n+2)(n+20) = n2 + 22n + 40

Squares of equal sizes always have the same difference.

E.g. 2 x 2, D=10, 3 x 3, D=40.

From now on I will only use n grids in my diagrams as they show the numbers that produce the difference.

4 x 4

...read more.

Middle

n+10

n+11

n+12

n+13

n+20

n+21

n+22

n+23

n+30

n+31

n+32

n+33

                                                n(n+23) = n2 + 23n

                                                (n+3)(n+20)= n2 + 23n + 60

                                                D = 60

n

n+1

n+2

n+3

n+4

n+10

n+11

n+12

n+13

n+14

n+20

n+21

n+22

n+23

n+24

n+30

n+31

n+32

n+33

n+34

n(n+34)= n2 + 34n

(n+4)(n+30)=n2+34n+120

D = 120

This is a table of my results.

X

2

3

4

D

20

60

120

2 x 10 = 20                From this I can tell that the formula for

3 x 20 = 60                finding X(X+1) rectangles is

4 x 30 = 120                10X(X-1)  OR  10X2 –10X

image05.png

This number is always 10(X-1)

Now I will look at rectangles where one pair of sides are two units longer than the other pair of sides.

X(X+2)

n

n+1

n+2

n+3

n+4

n+10

n+11

n+12

n+13

n+14

n+20

n+21

n+22

n+23

n+24

n+30

n+31

n+32

n+33

n+34

n(n+13)= n2 + 13n (n+3)(n+10)= n2 +13n+30

D = 30

n

n+1

n+2

n+3

n+4

n+10

n+11

n+12

n+13

n+14

n+20

n+21

n+22

n+23

n+24

n+30

n+31

n+32

n+33

n+34

n(n+24)=n2 +24n (n+4)(n+20)=n2 +24n+80

D = 80

n

n+1

n+2

n+3

n+4

n+5

n+10

n+11

n+12

n+13

n+14

n+15

n+20

n+21

n+22

n+23

n+24

n+25

n+30

n+31

...read more.

Conclusion

n

n+1

n+2

n+9

n+10

n+11

n+18

n+19

n+20

n(n+10) = n2 + 10n

(n+1)(n+9) = n2 + 10n + 9

D = 9

n

n+1

n+2

n+9

n+10

n+11

n+18

n+19

n+20

n(n+20) = n2 + 20n

(n+2)(n+18) = n2 + 20n + 36

D = 36

n

n+1

n+2

n+3

n+9

n+10

n+11

n+12

n+18

n+19

n+20

n+21

n+27

n+28

n+29

n+30

n(n+30) = n2 + 30n

(n+3)(n+27) = n2 + 30n + 81

D = 81

X

2

3

4

D

9

36

81

I will call the number of columns in a grid Z.

From this I can see that the formula is 9(X-1)2OR 9X2 –18X +9

The formula for a square on a 10x10 grid is 10X2 –20X +10

By comparing these two formulae I can tell that the formula for any square on any grid size is ZX2 –2ZX +Z

I predict that for the formula for rectangles I will have to substitute Z in to some of the values.

10(X2 +XY –Y –2X +1)                 Z(X2 +XY –Y –2X +1)image08.png

For example if Z=9, X=4 and Y=3 the difference will be 162.

20

26

47

53

20 x 53 = 1060

26 x 47 = 1222

D = 162

Now I have the formulae for any square or any rectangle on any size of grid. Given more time I would have found formulae for more irregular shapes like a T or a Pyramid.

        Luke Ferngrove

...read more.

This student written piece of work is one of many that can be found in our GCSE Number Stairs, Grids and Sequences section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Number Stairs, Grids and Sequences essays

  1. Investigation of diagonal difference.

    I will also include the results of a 2 x 2 cutout, as a square is a special form of a rectangle. Table of results for horizontally aligned cutouts Height of the cutout Length of the cutout Top left corner Top right corner Bottom left corner Bottom right corner Diagonal

  2. Investigate The Answer When The Products Of Opposite Corners on Number Grids Are Subtracted.

    I have checked this by drawing the grid: 1 2 3 4 5 6 7 8 9 10 11 12 Therefore the formula for rectangular grids with consecutive numbers is: A = D (W�) + W - W� - WD I have now investigated rectangular number grids where the numbers increase by 2.

  1. Maths Grids Totals

    20 21 22 23 24 29 30 31 32 33 38 39 40 41 42 47 48 49 50 51 56 57 58 59 60 24 x 56 = 1344 20 x 60 = 1200 1344 - 1200 = 144.

  2. Mathematics - Number Stairs

    a pattern of a jump size of 10 so I predict for grid widths 11 and 12 will be T = 10n + 120 and T = 10n + 130. 4 Step-Staircase / Grid Width 11 34 23 24 12 13 14 1 2 3 4 n 1 2 3

  1. Number Grids

    Numerical examples 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

  2. Number grids

    8 left over This is the product difference of 2 x 2 in an 8 x 8 grid. 9 x 9 Grid 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

  1. Investigate the products of 2x2 number squares within a large 10x10 number grid.

    the answers are even numbers I predict that this will be the same for all sets of 2x2 squares in a 10x10 large number grid. I will test this by finding the product of one more 2x2 number square: 5 6 15 16 5 x 16 = 80 My prediction was right.

  2. For my investigation I will be finding out patterns and differences in a number ...

    10x1x1 10x2x2 10x3x3 10x4x4 10(2-1)(2-1) 10(3-1)(3-1) 10(4-1)(4-1) 10(5-1)(5-1) 10(2-1) 2 10(3-1) 2 10(4-1) 2 10(5-1) 2 The algebraic formulae I worked out is shown on the next line. D means difference D = 10 (n-1) 2 2 3 4 5 2 10 3 40 4 90 5 160 Below is another way of setting out the differences for the squares.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work