• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Number Grids.

Extracts from this document...

Introduction

Number Grids

12

13

14

22

23

24

25

26

27

We were asked to investigate the difference in the products of sets of numbers on a number grid. These products are obtained by multiplying the top left number in a square box, by the bottom right number in the box. Then you find the product of the top right and bottom left and find the difference between the two products.

12 x 23 = 276

13 x 22 = 286

Difference (D) = 10

I will try this with other 2 x 2 boxes on the grid.

27

28

29

37

38

39

47

48

49

43

44

45

53

54

55

63

64

65

                43 x 54 = 2322                        27 x 38 = 1926

                44 x 53 = 2332                        28 x 37 = 1936

                      D            = 10                              D    = 10

On a 2 x 2 square box, the difference is always 10.

n

n+1

n+2

n+10

n+11

n+12

n+20

n+21

n+22

                                        n x (n+11) = n2 +11n

                                        (n+1)(n+10)= n2 +11n +10

image00.pngimage01.png

These numbers produce the difference

I will now try this with squares larger than 2 x 2.

3

4

5

13

14

15

23

24

25

27

28

29

37

38

39

47

48

49

                        3 x 25 = 75                             27 x 49 = 1323

                        5 x 23 = 115                             29 x 47 = 1363

                             D   =  40                                 D     = 40

n

n+1

n+2

n+10

n+11

n+12

n+20

n+21

n+22

                                     n(n+22) = n2 + 22n

                                     (n+2)(n+20) = n2 + 22n + 40

Squares of equal sizes always have the same difference.

E.g. 2 x 2, D=10, 3 x 3, D=40.

From now on I will only use n grids in my diagrams as they show the numbers that produce the difference.

4 x 4

...read more.

Middle

n+10

n+11

n+12

n+13

n+20

n+21

n+22

n+23

n+30

n+31

n+32

n+33

                                                n(n+23) = n2 + 23n

                                                (n+3)(n+20)= n2 + 23n + 60

                                                D = 60

n

n+1

n+2

n+3

n+4

n+10

n+11

n+12

n+13

n+14

n+20

n+21

n+22

n+23

n+24

n+30

n+31

n+32

n+33

n+34

n(n+34)= n2 + 34n

(n+4)(n+30)=n2+34n+120

D = 120

This is a table of my results.

X

2

3

4

D

20

60

120

2 x 10 = 20                From this I can tell that the formula for

3 x 20 = 60                finding X(X+1) rectangles is

4 x 30 = 120                10X(X-1)  OR  10X2 –10X

image05.png

This number is always 10(X-1)

Now I will look at rectangles where one pair of sides are two units longer than the other pair of sides.

X(X+2)

n

n+1

n+2

n+3

n+4

n+10

n+11

n+12

n+13

n+14

n+20

n+21

n+22

n+23

n+24

n+30

n+31

n+32

n+33

n+34

n(n+13)= n2 + 13n (n+3)(n+10)= n2 +13n+30

D = 30

n

n+1

n+2

n+3

n+4

n+10

n+11

n+12

n+13

n+14

n+20

n+21

n+22

n+23

n+24

n+30

n+31

n+32

n+33

n+34

n(n+24)=n2 +24n (n+4)(n+20)=n2 +24n+80

D = 80

n

n+1

n+2

n+3

n+4

n+5

n+10

n+11

n+12

n+13

n+14

n+15

n+20

n+21

n+22

n+23

n+24

n+25

n+30

n+31

...read more.

Conclusion

n

n+1

n+2

n+9

n+10

n+11

n+18

n+19

n+20

n(n+10) = n2 + 10n

(n+1)(n+9) = n2 + 10n + 9

D = 9

n

n+1

n+2

n+9

n+10

n+11

n+18

n+19

n+20

n(n+20) = n2 + 20n

(n+2)(n+18) = n2 + 20n + 36

D = 36

n

n+1

n+2

n+3

n+9

n+10

n+11

n+12

n+18

n+19

n+20

n+21

n+27

n+28

n+29

n+30

n(n+30) = n2 + 30n

(n+3)(n+27) = n2 + 30n + 81

D = 81

X

2

3

4

D

9

36

81

I will call the number of columns in a grid Z.

From this I can see that the formula is 9(X-1)2OR 9X2 –18X +9

The formula for a square on a 10x10 grid is 10X2 –20X +10

By comparing these two formulae I can tell that the formula for any square on any grid size is ZX2 –2ZX +Z

I predict that for the formula for rectangles I will have to substitute Z in to some of the values.

10(X2 +XY –Y –2X +1)                 Z(X2 +XY –Y –2X +1)image08.png

For example if Z=9, X=4 and Y=3 the difference will be 162.

20

26

47

53

20 x 53 = 1060

26 x 47 = 1222

D = 162

Now I have the formulae for any square or any rectangle on any size of grid. Given more time I would have found formulae for more irregular shapes like a T or a Pyramid.

        Luke Ferngrove

...read more.

This student written piece of work is one of many that can be found in our GCSE Number Stairs, Grids and Sequences section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Number Stairs, Grids and Sequences essays

  1. Investigation of diagonal difference.

    1 From calculating the diagonal difference of these 2 x X cutouts I can now produce a table of results. I will start by producing a table of results for the horizontally aligned cutouts, and then I will produce a further table of results for vertically aligned cutouts.

  2. Maths Grids Totals

    + x(n-1) + 11(n-1)2 - x2 - 12x(n-1). The x2 and -x2 cancel each other out, while the 11x(n-1) and x(n-1) add together to cancel out the -12x(n-1). This leaves 11(n-1)2, which is the overall formula for an 11 x 11 grid. A 10 x 10 grid's formula is 10(n-1)2, a 9 x 9 grid is 9(n-1)2 and an 11 x 11 grid is 11(n-1)2.

  1. Number Grids

    67 68 69 70 77 78 79 80 87 88 89 90 97 98 99 100 70 x 97 = 6790 67 x 100 = 6700 6790 - 6700 = 90 I will now use algebra to prove that all 4 x 4 grids taken from a 10 x 10 master grid result in an answer of 90.

  2. Number Grids

    2 ). This rule can be explained better using algebraic formulae for the two products: (n = number in the top left hand corner) Top left/bottom right product: n(n + 11) = n� + 11n Top right/bottom left product: (n + 1)(n + 10)

  1. Mathematics - Number Stairs

    + 10 T = 3n + 11 T = 3n + 12 T = 3n + 13 3 T = 6n + 36 T = 6n + 40 T = 6n + 44 T = 6n + 48 T = 6n + 52 4 T = 10n + 90 5

  2. Algebra Investigation - Grid Square and Cube Relationships

    The bottom right number is always gained by finding the sum of the top right and bottom left, which (in algebraic terms) produces n+11w-11. n ~ n+w-1 ~ ~ ~ n+10w-10 ~ n+11w-11 In order to find the difference in previous boxes, the difference between the product of the top

  1. Number Grids

    Numerical examples 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

  2. To do this I am going to be drawing different size grids, including 2,3,4,5,6,7, ...

    1 2 3 4 5 1x7=7 12-7=5 6 7 8 9 10 2x6=12 difference=5 11 12 13 14 15 16 17 18 19 20 14x20=280 285-280=5 21 22 23 24 25 15x19=285 difference=5 26 27 28 29 30 21x27=567 572-567=5 22x26=572 difference=5 The last grid size I am going to try is a 6 grid.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work