• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  16. 16
    16
  17. 17
    17
  • Level: GCSE
  • Subject: Maths
  • Word count: 1987

Number Grids.

Extracts from this document...

Introduction

Number Grids The diagram shows a 10*10 grid, a rectangle has been shaded on the 10*10 grid. I will find the diagonal difference between the products of the numbers in the opposite corners of the rectangle. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 Opposite numbers in the rectangle are:- 54 and 66 56 and 64 56*64=3584 54*66=3564 .�. The Diagonal Difference = 3584 - 3564 = 20 Study I have studied some more 3*2 rectangles and I have found this:- 12 13 14 22 23 24 12*24=288 14*22=308 Diagonal difference =308 - 288=20 74*86=6364 76*84=6384 Diagonal difference =6384 - 6364=20 74 75 76 84 85 86 27*39=1053 29*37=1073 Diagonal difference =1073 - 1053= 20 27 28 29 37 38 39 So from this I conclude that all 3*2 rectangles have a diagonal difference of 20. ...read more.

Middle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 I will begin by doing some 3*2 rectangles 21*32= 672 23*30=690 Diagonal difference=690 - 672 =18 21 22 23 30 31 32 57*68= 3876 59*66=3894 Diagonal difference=3894 - 3876 =18 57 58 59 66 67 68 So I conclude that all 3*2 squares on a 9*9 grid have a diagonal difference of 18. I have tested the other way by using a 2*3 rectangle. 1*20=20 2*19=38 Diagonal difference = 38 - 20 = 18 1 2 10 11 19 20 40*59=2360 41*58=2378 Diagonal difference = 2378 - 2360 = 18 40 41 49 50 58 59 So all 3*2 and 2*3 squares have a diagonal difference of 18. I will study more rectangles on a 9*9grid and then draw up a table. ...read more.

Conclusion

3*2 rectangle on an 8*8 grid I use my formula to predict that: - (3-1)*(2-1)*8 =2*1*8 =16 2*12=24 4*10=40 Diagonal difference = 40 - 24=16 2 3 4 10 11 12 My prediction is right. So using my formula I predict that a 3*3 square on an 8*8 grid will be (X-1)*(X-1)*8 (3-1)*(3-1)*8 =2*2*8 =32 46*64=2944 48*62=2976 Diagonal difference = 2976 - 2944 =32 46 47 48 54 55 56 62 63 64 So my prediction and formula are also right. A pattern A pattern has shown up in the formulas so I made this table: - Grid rectangle Formula 10*10 (R-1)*(C-1)*10 9*9 (R-1)*(C-1)*9 8*8 (R-1)*(C-1)*8 7*7 (R-1)*(C-1)*7 6*6 (R-1)*(C-1)*6 5*5 (R-1)*(C-1)*5 Grid Square Formula 10*10 (X-1)*(X-1)*10 9*9 (X-1)*(X-1)*9 8*8 (X-1)*(X-1)*8 7*7 (X-1)*(X-1)*7 6*6 (X-1)*(X-1)*6 So on a 6*6 grid I would expect a 3*2 rectangle to be: - (3-1)*(2-1)*6 =2*1*6 =12 So 8*16=128 10*14=140 Diagonal difference = 140 - 128 =12 8 9 10 14 15 16 Also a 3*3 square on a 6*6 grid would be: - (X-1)*(X-1)*6 => (3-1)*(3-1)*6 =2*2*6 =24 3*17=51 5*15=75 Diagonal difference = 75 - 51 =24 3 4 5 9 10 11 15 16 17 Both predictions and formulas are correct so I conclude that the overall formula is: - R= rows C= columns X= square N� G= grid Rectangle: - (R-1)*(C-1)*G ...AND... Square: - (X-1)*(X-1)*G ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Number Stairs, Grids and Sequences section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Number Stairs, Grids and Sequences essays

  1. number grid

    I am now going to repeat my investigation again so that my results are more reliable and so I can create a table with them. _190 180 10 For this 2 X 2 grid I have done the exact same thing as I did for the first one.

  2. Investigation of diagonal difference.

    a 2x2 cutout anywhere on the 10x10 grid by implementing the use of simple algebra. I can call the top left number in the cutout n, the top right number n + 1, the bottom left number n + 10 and the bottom right n + 11, as this is

  1. Maths - number grid

    My formula for squares was 10(r -1) My formula for rectangles was 10(s -1)(r - 1). I notice that the number 10 appears in both formulas and the reason I think this has happened might be because the squares and rectangles I used were selected from the provided 10x10 grid.

  2. Maths Grids Totals

    This is also correct. This means that the formula must work for all rectangles and squares. I am now going to predict the difference for a 2 x 5 rectangle: The formula for a 2 x 5 rectangle is 10(2-1)(5-1) = 10 x 1 x 4 = 40.

  1. Maths-Number Grid

    Conclusion/ Evaluation! I have completed my investigation on finding the difference between products in square grids and have come to the conclusion that the correct rule was established, 10n� - 20n +10 . In this investigation I had various different sized square grids from which I had to multiply the

  2. Number Grids

    Grid size Result 2x2 6 3x3 24 4x4 54 n Result 2 6 3 24 4 54 Using nth term, I know that the formula is 6(n-1)2. If this formula is correct then a 5x5 grid taken from a 6x6 master grid would result in the following.

  1. Number Grids Investigation Coursework

    Let the top left square in the rectangle equal a, and therefore: a a+1 a+2 a+3 a+10 a+11 a+12 a+13 So the algebraic expression for the difference between the products of opposite corners would be: (top right x bottom left) - (top left x bottom right) = (a + 3)

  2. Number Grids

    32 33 34 12 13 14 15 22 23 24 25 32 33 34 35 42 43 44 45 60 61 62 63 70 71 72 73 80 81 82 83 90 91 92 93 23 24 25 26 32 33 34 35 42 43 44 45 52 53 54

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work