• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Number Grids

Extracts from this document...

Introduction

Number Gridss 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 Use the following rule: Find the product of the top left number and the bottom right number in the square. Do the same thing with the bottom left and top right numbers in the square. Calculate the difference between these numbers. INVESTIGATE! To start this assignment I randomly selected an area in the matrix to put boxes of size; (2x2) ...read more.

Middle

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 Z 92 93 94 95 96 97 98 99 Q I came up with: X=X Y=X + (n-1) Z=X + ((n-1) x 10) Q=X + ((n-1) x 10) + (n-1) I used this to formulate the equation: X x X+11(n-1)) - ((X+ (n-1)X+10(n-1))) This cancels down to: (X2+11X(n-1))-(X2+11X(n-1) +10(n-1)2) To work out my overall formula I will subtract the first part of the Formula from the other: X2+11X(n-1) - X2+11X(n-1)) +10(n-1)2 0 + 0 + 0 +10(n-1)2 =10(n-1)2 Rectangles Solving the puzzle of rectangles in a grid came quite quickly to me as I realized that n was just for use in a square because the dimensions were the same. I labeled the vertical length now as m, but keeping the horizontal length as n. I adapted the equation from 10(n-1)2 into 10(n-1)(m-1). ...read more.

Conclusion

However, it should work with a rectangular grid as well. I tried a 3x4 inner grid in a 6x7 outer grid. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 (3-1)(4-1)7 =2x3x7 =42 The formula still works. 4x23 = 92, 2x25 = 50, 92-50 = 42 so I have found a formula which will work whatever of the size, inner or outer grid. Conclusion I have now found three equations, from these I can find any size of rectangle or square in any size of number grid. They are: * 10(n-1)2, for any square inside a 10x10 grid * 10(n-1)(m-1), for any rectangle inside a 10x10 grid * g(n-1)(m-1), for any rectangle or square inside any grid Josef Jeffrey Math's G.C.S.E coursework ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Number Stairs, Grids and Sequences section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Number Stairs, Grids and Sequences essays

  1. Number Grids Investigation Coursework

    Grids of Different Widths and Rectangles I can see the similarities between this formula and my original formula for squares in 10 x 10 grids. My original formula was D = 10 (n - 1)2 and this later developed to D = w (n - 1)2, with w being the width of the grid.

  2. Investigation of diagonal difference.

    relationship between the length of the cutout, the top right corner, and the bottom right corner. The number added needed to make up the value of the top right and bottom right corner is always 1 less than the length of the cutout.

  1. Investigate the differences between products in a controlled sized grid.

    It will also be easier to see which numbers I am going to multiply together. Number A Number B Number C Number D Product of A*D Product of B*C Product of A*D- product of B*C 1 2 21 22 22 42 20 9 10 29 30 270 290 20 36

  2. Number Grids Coursework.

    1 Part 3 Grid Size = 10*10 Box Size = 4*4 Experiment 1) 1 * 34 = 34 4 * 34 = 124 124 - 34 = 90 2) 7 * 40 = 280 10 * 37 = 370 370 - 280 = 90 3)

  1. Number Grids

    I will then place these results in a table before trying to work out a general rule between all the differences using an algebraic formula. Here is the investigation for a 3 x 3 grid... 1 2 3 11 12 13 21 22 23 12 13 14 22 23 24

  2. Maths - number grid

    My formula for squares was 10(r -1) My formula for rectangles was 10(s -1)(r - 1). I notice that the number 10 appears in both formulas and the reason I think this has happened might be because the squares and rectangles I used were selected from the provided 10x10 grid.

  1. Maths Grids Totals

    32 33 39 40 41 42 48 49 50 51 24 x 48 = 1152 21 x 51 = 1071 1152 - 1071 = 81 5 6 7 8 14 15 16 17 23 24 25 26 32 33 34 35 8 x 32 = 256 5 x 35 =

  2. number grid

    Results Square Size (s) Difference (d) 2 X 2 10 3 X 3 40 4 X 4 90 5 X 5 160 After looking at my table I have found out that if I subtract 1 from the square size and square it, the difference is always 10 times the number that I get.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work