• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  16. 16
    16
  17. 17
    17
  18. 18
    18
  19. 19
    19
  20. 20
    20
  21. 21
    21
  22. 22
    22
  23. 23
    23
  24. 24
    24
  25. 25
    25
  26. 26
    26

Trolley Speed

Extracts from this document...

Introduction

Factors affecting the speed of a trolleycoae ae" . "r se" . ae . "ae" . "w or". ae . " " . ae . "k inae foae " . ae . ".

Travelling down a ramp

Factors such as; type of surface of ramp, height of ramp, weight/mass of trolley and the gradient or angle of a ramp all affect the speed of a trolley as it travels down a ramp. For instance a trolley may accelerate faster down a ramp on smooth wood rather than on carpet because carpet might provide greater friction for the tyres rather than the smooth wood. Out of all these factors, I am going to pick just 1 factor and alter it 5 different times, doing 3 trials for each time. We have also done some preliminary work on ticker - timers, so in my investigation I am going to expand on the notion of ticker - timers and incorporate my knowledge of ticker - timers in to this investigation.

Aim: To investigate the relationship between the speed of the trolley as it travels down the ramp and the gradient of the ramp.coed ed" . "r se" . ed . "ed" . "w or". ed . " " . ed . "k ined foed " . ed . ":

Hypothesis: I believe that the speed of the trolley travelling down the ramp will increase as the gradient of the ramp is increased. This is because of several different factors.

One of these factors is Potential energy. Potential energy is stored energy possessed by a system as a result of the relative positions of the components of that particular system. In this case, it is a trolley that is held at the top of the ramp, which is above the ground; the trolley and the earth possess a certain amount of potential energy. In this experiment we are focusing on a particular type of potential energy, gravitational energy.

...read more.

Middle

1. After each experiment we cleaned the ramp with a cloth, to make sure that there was

no dirt which could affect the speed of the trolley as it travelled down the ramp.

2. Before we let go off the trolley, I held the ramp so that it would not tilt and therefore

it would not interfere with the speed of the trolley as it travelled down the ramp.

These above factors will also give me more accurate and reliable results. People consider accurate and reliable results as the same kind of result but it is not. Accurate results are results, which are right or correct results. A reliable result means, every time you carry out the experiment they are almost identical results. For example a normal weighing scale might give you reliable results, which gives you the same results each time you do the experiment but they are not as accurate as if you measure with a digital scale. I believe that my results are reliable but not accurate because we had limited resources to carry out the experiment with. Looking at my results they do follow a pattern and a trend. Both the potential and kinetic energy go up as the height increase but more potential than kinetic. The acceleration of the trolley is more than the speed of the trolley and both the kinetic energy and acceleration graphs are almost identical. I have no anomalous results but two inaccurate results, which do not fit in with the rest of the attempts at the same heights. This may have happened because the person timing the trolley may have pressed the digital stopwatch's stop button too late.

...read more.

Conclusion

Height (cm)

Reading 1

Reading 2

Reading 3

Average

Average Speed (cm/s)

12

1.011

1.078

1.007

1.032

67.83

14

0.913

0.905

0.936

0.918

76.25

16

0.818

0.847

0.835

0.833

84.00

            I feel that overall the results were quite accurate. This is can be seen when looking at the graphs, which show a straight line with all of the points apart from one or a few being very close to or on that line.

            The reasons for these few inaccurate results may have been as followed:

The trolley may have been pushed slightly at the beginning therefore giving it an advantage.

The apparatus might not have been set up correctly meaning that results could have been abnormal.

The height of the trolley might not have been measured correctly and therefore, with a greater height, the trolley would have gone faster with a lower time.

            As there were only three anomalies, I can say that the results obtained are reliable to the extent that a clear conclusion can be made from them. I believe that the results obtained do strongly support my conclusion and that further results do not need to be taken apart from the three anomalies which should be repeated.

Further work:

            In addition to the experiment, further work does not need to be done. However to obtain more evidence to support my predictions and possibly to make another prediction, I would also vary another variable. The variable I would choose to vary would add a weight to the trolley pulling it down the ramp. This would speed it up and I would vary the amount of weights. To obtain good results I would drop the weight down onto the floor from a string attached to the trolley with the help of a pulley. With more weights, I would predict that the trolley would go faster down the slope and therefore there would be a lower time.

suhura. Thus, we can say that whilst this represents a progression, in the end we have come no closer to any "real" knowledge.

this coursework was downloaded from Coursework.info. Redistribution prohib

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. How the height of a ramp affects the speed of a toy car.

    10 x 0.050 0.025 0.068 0.05 x 10 x 0.068 0.034 0.085 0.05 x 10 x 0.085 0.0425 From my results I can use the nth term to try to find the relationships between the speed, I can then work out a formula: height 1.7 3.5 5 6.8 8.5 speed

  2. Investigation is to see how changing the height of a ramp affects the stopping ...

    If the car has more G.P.E, then it will take longer to stop, as the forces working towards it, will find it more difficult to reduce that energy to bring the car to a halt, therefore increasing the stopping distance of the car.

  1. Investigate and measure the speed of a ball rolling down a ramp.

    And that also proves that if an object wanted to move it would need a specific amount of kinetic energy but if it wanted to go faster or stronger, it would need more kinetic energy, that statement works both ways.

  2. Investigation of the speed of a trolley down a ramp and its gradient

    It will slow the trolley down and produce heat and sound. In this experiment there will be dependent, independent and control variables. The independent variable will be the height of the ramp. The dependant variable will be the acceleration of the trolley as it will depend on the height of the ramp.

  1. An investigation into the acceleration of a trolley up a ramp.

    Therefore altering the mass would directly affect the product and an increase in mass would result in a higher product. This is also the case the other way round. For example; if m=0.5kg; g=10N/Kg and h=0.2 then PE=1J But if m= 0.8kg and the others remain constant then PE=1.6J Kinetic

  2. What affects the acceleration of a trolley down a ramp?

    Kinetic energy = 1/2 mv� The potential energy is converted to kinetic energy as an object falls. If the object falls from rest then the change in potential energy is equal to the gain in kinetic energy Mgh = 1/2 mv� Where h is the distance fallen and v is

  1. The Flywheel as an Alternative Energy Storage Device for Electric Vehicles (EV): Problems Associated ...

    However, as the rotational speed of the wheel increases, the centripetal force required to hold the individual particles in the spinning wheel increases by the equation Where Fc is the centripetal force, and is the angular velocity of the spinning object.

  2. My investigation is about how the number of paperclips added onto a paper spinner ...

    The paperclip was weighed using a weighing scale that read correct to two decimal places, and pressed the 'tare' button to make the weight zero before weighing the paperclip to show the true weight of the paperclip. I attached a paperclip to the spinner and got on a table in

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work