• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Enzyme Experiment Design

Extracts from this document...


Enzyme Activity Introduction Enzymes are globular protein, which is made up by chains of amino acids, that acts as a catalyst for biochemical reaction. Enzyme will be able to work as a catalyst when a substrate (a reactant in a biochemical reaction) is present and bind with the active site on enzyme, which is the area on the surface of an enzyme. In this experiment, the enzyme is catalase and the substrate is hydrogen peroxide. Using catalase hydrogen peroxide will break down into water and oxygen, which can be shown by the chemical equation: 2H2O2 2H2O + O2 Also, the rate of enzyme activity can be affected by different factors including temperature, pH level and substrate concentration. Aim In this experiment, I will be investigating how the change in hydrogen peroxide concentration can affect the rate of enzyme activity. In order to do this I will measure the amount of oxygen produced in a certain period for different concentration of hydrogen peroxide. ...read more.


By keeping the temperature constant can prevent it acting as a contributing factor that will affect the reliability of my results. â»Throughout the experiment, I will only be using 1% catalase solution. â»The volume of catalase (3ml) and hydrogen peroxide(2ml) is to be keep constant 3ml catalase, by using measuring cylinders. â»Time – I will only measure the amount of oxygen produced in the first 10 seconds of the reaction. 1. Uncontrolled Variable â»pH level of hydrogen peroxide concentration: Concentration of H2O2 (%) 0 10 20 30 40 50 60 70 80 90 100 pH of H2O2 at 25â 7.0 5.3 4.9 4.7 4.6 4.5 4.5 4.5 4.6 4.9 6.2 source: http://h2o2.com/faqs/FaqDetail.aspx?fId=26 As shown from the table above, different concentration of hydrogen peroxide has different pH level. It can’t be possible for me to keep the pH level of hydrogen peroxide constant while changing its concentration; therefore even though pH level may affect the rate of enzyme activity, I cannot control the pH level as the change in pH level may also change the concentration of hydrogen peroxide. ...read more.


2. Prepare 15ml of 1% catalase and 10ml of 20% hydrogen peroxide. 3. Use measuring cylinder and pipette to get 3ml of 1% catalase and 2ml of 20% hydrogen peroxide. Check the measurements at eye level to ensure that the measurements are exact. And pour each solution into a test tube. Repeat this for 5 times. 4. Pour the catalase into the conical flask. Pour a test tube that contains 2ml of 20% hydrogen peroxide into the conical flask. 5. Have the stopwatch ready and quickly cover the conical flask with the stopper that is attached to the delivery tube and immediately at timing with the stopwatch 6. When the time almost reaches to 10 seconds keep your eyes close to the plunger for the amount of oxygen produced. Pull the stopper out from the flask and record the result down. 7. Push the plunger back and rinse conical flask 8. Repeat steps 2 to 9 for five times for each different hydrogen peroxide concentration. (Rinse beaker once you change the concentration of hydrogen peroxide) ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Biology section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Biology essays

  1. Browning Enzyme

    Ninety-five percentage of the values lie with � 0.02 of the Standard deviation and this is true for my graph. The temperature 60�C has the error bar of the shortest length and thus it has a standard deviation which means that the data points are considered close to the expected value.

  2. Investigating the effect of pH of Hydrogen Peroxide upon the activity of Catalase

    Amount of pH buffers used(ml +/-0.05) Temperature(�? +/- 0.5) 5 ml pH 1 5 ml 30 5 ml pH 2 5 ml 30 5 ml pH 3 5 ml 30 5 ml pH 4 5 ml 30 5 ml pH 5 5 ml 30 pH level of Hydrogen Peroxide(pH +/- 0.05)

  1. Investigating an enzyme-controlled reaction: catalase and hydrogen peroxide concentration

    down each time, if the bung is pushed down further then the volume in the tube will be less so the 30cm3 of gas is reached faster. c) Due to the fairly slow speed of our reactions it is only possible to measure the time of the reaction to the

  2. How pH effects enzyme Catalase in potato cells

    Which explains the low rate of respiration at too low and too high pH levels, including pH3 where the rate was so low I was not able to obtain any results. Various scientific studies also show, amino acids in potatoes do help out by neutralizing acidic conditions by acting as buffers.

  1. The Effect of Temperature on the Rate of Activity of the Enzyme Catalase in ...

    Ho 5: There will be no significant difference between mean relative rate of Enzyme activity of catalase for the target 20oC catalase temperature data set and the target 60oC enzyme catalase temperature data set. Ho 6: There will be no significant difference between mean relative rate of Enzyme activity of

  2. Biology Lan - factors affecting enzyme activity

    After the contact, oxygen gas, the bubbles were formed and the gas was released into the graduated cylinder. Some amount of water went out the cylinder. The vial was agitated for 90 seconds for precise result. After 5 trials for each 5 beakers, all the materials were cleaned and they were all put back into the cabin.

  1. Lung Capacity Fitness Level

    Method of breathing Participants must inhale as deeply as they can outside of the spirometer, then exhale forcefully into the spirometer. As soon as the participant has finished exhaling, they must immediately inhale as deeply as they can, still with the spirometer in their mouth.

  2. What is the effect of pH levels on the net production, given by the ...

    Salinity was monitored each 24 hour period in samples to make sure salinity readings were same across all samples. The amount of pH buffer solution (130 mL + 5 mL) used to keep pH at + 0.5 of pH values.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work