Describe and evaluate Kelley's covariation-based account of causal attribution.

Authors Avatar

 Describe and evaluate Kelley’s covariation-based account of causal attribution.

 The study of causal attributions aims to infer the processes by which people interpret why things happen in the world around them (Baron & Byrne, 2000). What may a person attribute their exam failure to? Would an observer of a car crash ascribe the causes to one particular driver, the vehicles involved, the specific circumstances on the road, or to one of numerous other sources? Kelley (1967; 1971; 1972 as cited in Kelley 1973) developed Heider’s (1958, as cited in Kelley, 1973) theory that humans act as naïve scientists attempting to correctly determine causality in everyday life. In view of this Kelley (1973) built his covariation-based theory of causal attribution around the statistical technique of analysis of variance (ANOVA) suggesting that when a perceiver has the opportunity to make multiple observations they determine their attributions within this scientifically based framework. A critical evaluation of Kelley’s (1973) covariation-based account of attribution, and McArthur’s (1972) subsequent experimental verification of this theory will be given. The covariation-based model will be interpreted with respect to the ANOVA framework employed, with the view that an integrative model of attribution is needed to account for the biases that people bring to bear in the process of attributing causality.

Kelley’s (1967; 1971; 1972 as cited in Kelley 1973) attribution theory stems from the covariation principle that “ an effect is attributed to one of its possible causes with which, over time, it covaries” (Kelley, 1973, p. 108). Furthermore, Kelley (1973) suggested that the majority of attribution problems vary in the extent to which they are effected by three possible causes: persons, times and entities. Kelley termed information known about these 3 causes as “consensus” information, relating to the variations over different persons, “consistency” information, concerning the variations in outcome over different time or modalities, and “distinctiveness” information, regarding the extent to which effects vary over different stimuli. Consider a situation such as ‘Jack smiles at the girl’. How would we evaluate why this event occurred? We may also know that ‘everyone else smiles at the girl’, which would reflect high consensus. Furthermore, we may know that ‘in the past Jack has always smiled at the girl, reflecting high consistency. Finally, if ‘Jack does not smile at any other girl’ the information is high in distinctiveness. Therefore, when employing a layperson’s version of the ANOVA model to aid attribution, consensus, consistency and distinctiveness information becomes the independent variables and the effect (e.g. Jack smiling) constitutes the dependent variable (Kelley, 1973).

Join now!

Using the concept that consensus, consistency and distinctiveness are evaluated using the ANOVA model, Kelley (1967; 1971; 1972 as cited in Kelley 1973) predicted the patterns of information that would lead to specific attributions. He suggested that an information pattern of high consensus, high consistency and high distinctiveness (as seen in the scenario above) would prompt an attribution of causality to the particular entity (in this case the girl). Kelley (1973) also suggested that a pattern of low consensus, high consistency and low distinctiveness (e.g. Jack, alone smiles at the girl, he has always smiled at the girl yet ...

This is a preview of the whole essay