A2 Physics;Research Report - Use and Function of Positron Emission Tomography

Authors Avatar

The Use and Function of Positron Emission Tomography Scanners

Introduction

Positron emission tomography (PET) is a technique that is revolutionizing research into the activity of the brain. A patient inhales carbon monoxide containing some carbon-11 isotopes or some other biologically active molecules which emit positrons. Carbon monoxide attaches to haemoglobin molecules in red blood cells with a greater affinity than oxygen, to form carboxyhaemoglobin almost irreversibly.

Using the example of carbon-11, when areas of the brain are active the blood flow to them increases, so the concentration of carbon-11 in that part of the brain increases. The 11C isotope of carbon is artificial and decays by β+ (positron) emission. Within about 1mm of its emission point a positron will annihilate with an electron to produce two gamma-ray photons. As the positrons are not moving that quickly when they annihilate with an electron the two photons emerge virtually back-to-back, which conserves momentum. The patient is surrounded by a ring of scintillation counters with detect the emerging gamma-ray photons (scintillation counters are photomultiplier tubes, each with its own sodium iodide crystals). A computer processes this information to reconstruct, very accurately, the point inside the patient from which the photons originated. The result is a map of the blood flow in the brain. If the patient is asked to carry o some activity such as reading, the PET scanner can detect the change in blood flow as parts of the brain become active. One disadvantage of the technique is that it cannot record the activity of parts of the brain that are constantly active – only changes in blood flow can be detected.

Basic Nuclear Physics

Atomic Structure and Radioactivity

Matter is composed of atoms. An atom consists of a nucleus containing protons and neutrons, collectively called nucleons, and electrons existing as orbitals around the nucleus. The electrons, within this state, move without loss of energy. The number of protons and neutrons in a nucleus are represented by Z and N respectively. The sum of the number of neutrons and protons is the mass number denoted by A. A unique combination of a given number of protons and neutrons in a nucleus leads to an atom called the nuclide. A nuclide X is represented by .

Join now!

The properties of discussed subatomic particles are listed below:

(a.m.u. refers to atomic mass units; a scale upon which one carbon-12 atom has a mass of exactly 12 atomic mass units. 5s.f. is short for 5 significant figures)

The electrons exist as different energy shells designated as K-shell, L-shell, M-shell etc., with the K-shell being the innermost shell. In the most stable configuration, the electrons occupy the innermost orbits, where they are most tightly bound by the attraction of the relatively heavy nucleus. Electrons can be moved to higher orbits, but this requires the input of energy to move the ...

This is a preview of the whole essay