human circulation system

Authors Avatar

Human Circulatory System

Small organisms don’t have a bloodstream, but instead rely on the simple diffusion of materials for transport around their cells. This is OK for single cells, but it would take days for molecules to diffuse through a large animal, so most animals have a circulatory system with a pump to transport materials quickly around their bodies. This is an example of a mass flow system, which means the transport of substances in the flow of a fluid (as opposed to diffusion, which is the random motion of molecules in a stationary fluid). The transport of materials in the xylem and phloem of plants is

an other example of mass flow. Mass flow systems work together with the specialised exchange systems (such as lungs, gills and leaves), which we saw in module 1. Humans have a double circulatory system with a 4-chambered heart. In humans the right side of the heart pumps blood to the lungs only and is called the pulmonary circulation, while the left side of the heart pumps blood to the rest of the body – the systemic circulation. Until then people assumed that blood ebbed and flowed through the same tubes, because they hadn't seen capillaries.

The human heart has four chambers: two thin-walled atria on top, which receive blood, and two thick-walled ventricles underneath, which pump blood. Veins carry blood into the atria and arteries carry blood away from the ventricles. Between the atria and the ventricles are atrioventricular valves, which prevent back-flow of blood from the ventricles to the atria. The left valve has two flaps and is called the bicuspid (or mitral) valve, while the right valve has 3 flaps and is called the tricuspid valve. The valves are held in place by valve tendons (“heart strings”) attached to papillary

muscles, which contract at the same time as the ventricles, holding the vales closed. There are also two semi-lunar valves in the arteries (the only examples of valves in arteries) called the pulmonary and aortic valves. The left and right halves of the heart are separated by the inter-ventricular septum. The walls of the right ventricle are 3 times thinner than on the left and it produces less force and pressure in the

Join now!

blood. This is partly because the blood has less far to go (the lungs are right next to the heart), but also because a lower pressure in the pulmonary circulation means that less fluid passes from the capillaries to the alveoli. The heart is made of cardiac muscle, composed of cells called myocytes. When myocytes receive an electrical impulse they contract together, causing a heartbeat. Since myocytes are constantly

active, they have a great requirement for oxygen, so are fed by numerous capillaries from two coronary arteries. These arise from the aorta as it leaves the heart. Blood returns via ...

This is a preview of the whole essay